World Hepatitis Day: proof of concept HCV nanoparticle vaccine

02 Aug 2021
02 Aug 2021

Immunology research update from Immunopaedia.org.za

Hepatitis is an inflammatory disease that affects the liver commonly caused by infection iwht hepatitis virus A, B, C, D or E. Viral hepatitis infection is a major global threat with approximately 350 million individuals with chronic hepatitis caused by either Hepatitis B (HBV) or C virus (HCV). Hepatitis is such a major problem that there is a dedicated World Hepatitis awareness day on the 28th July. Fortunately, there is a vaccine against HAV and HBV which are very effective. There is one vaccine against hepatitis E virus that has been approved for use in China but is not available in other countries. Hepatitis D virus (HDV) infection requires co-infection with HBV to facilitate viral replication, accordingly, HBV vaccination can also prevent HDV infection. Unfortunately, no vaccine against HCV is available yet In this article we highlight a recent research study by He et al., Proof of concept for rational design of hepatitis C virus E2 core nanoparticle vaccines published last year.

HCV is a very genetically diverse including six major genotypes and more than 86 subtypes, additionally, HCV has a rapid mutation of HCV leads to viral quasispecies that can escape the immune response in infected individuals. This makes developing HCV vaccines very challenging. HCV uses envelope glycoproteins E and E2 to enter human cells, of these two proteins E2 is a major target for naturally induced neutralising antibodies (nAbs)that prevent HCV binding to CD81 (human protein). In this study by He et al., demonstrated that stabilising of E2 protein in a putative HCV- E2 nanoparticle vaccine induced “elicited more effective nAb responses than soluble E2 cores. Next-generation sequencing (NGS) defined distinct B cell patterns associated with nanoparticle-induced antibody responses, which target the conserved neutralizing epitopes on E2 and cross-neutralize HCV genotypes.”

Epitope mapping of polyclonal antibody sera from groups 1 and 3 in study #1. Surface model of E2ECTO is shown in the middle with the FL and AS412 colored in cyan and pink, respectively. Statistical analysis of EC50 titers (fold of dilution) of groups 1 and 3 against the FL probe (left) and the AS412 probe (right). Structural models of the designed nanoparticle probes are placed next to their plots. (He et al., 2020)

Journal Article: He et al., 2020. Proof of concept for rational design of hepatitis C virus E2 core nanoparticle vaccines. Science

SOURCE: www.immunopaedia.org.za/breaking-news/world-hepatitis-day-proof-of-concept-hcv-nanoparticle-vaccine