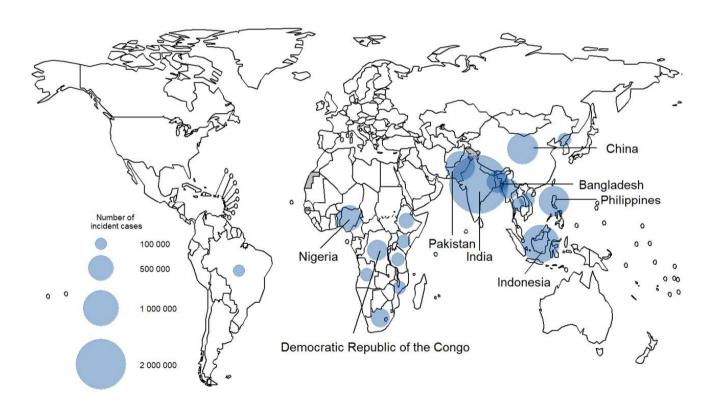
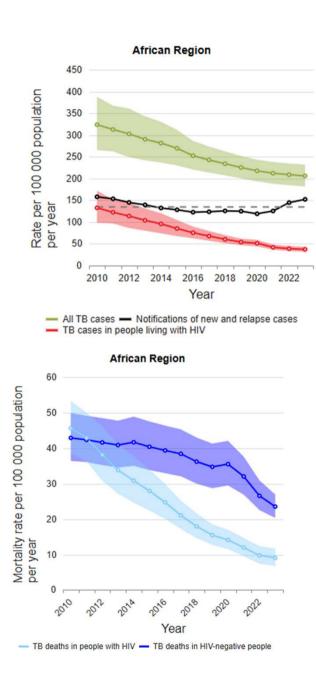
Rationale for using modelling to inform future TB vaccine introductions

WHO National Immunisation Technical and Advisory
Group Support Hub webinar,
Quarter 1 of 2025,
19 March 2025

Mmamapudi Kubjane


Health Economic and Epidemiology Research Office

Health Economics and Epidemiology Research Office

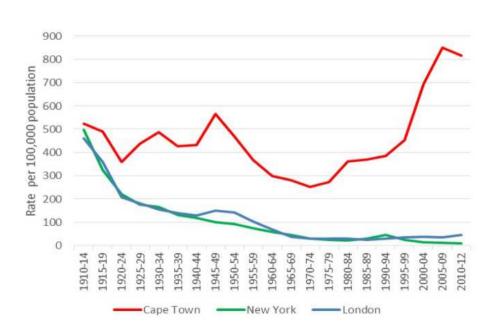


Background

➤ Globally, 10.1 million fell ill with TB in 2023; 1.25 million died.

WHO TB Report, 2023

Background


> Control strategies over time, pre 1980s

Discovery of anti-TB drugs and multi-drug approach. 24 months identified duration

Bacillus
CalmetteGuerin
(BCG)
vaccine
developed
and used in
humans

1981 Shorter course established (6-8 months)

TB notification rates over time, cities in the northern vs. southern hemisphere

Hermans et al, Plos One. 2015

Evolution of TB control and response eras

1994–2005: Directly Observed Treatment Strategy (DOTS)

Focussed on finding and treating patients effectively.

1993

TB declared a public health emergency

2006–2015: Stop TB Strategy and Millennium Development Goals

DOTS updated to account for increasing HIV-associated TB, address drugresistant TB (DR-TB); integration of HIV/TB services.

2008-2010

Infection control IPT for all eligible HIV irrespecstive of TST

1995-1997

DOTS strategy adopted; National TB

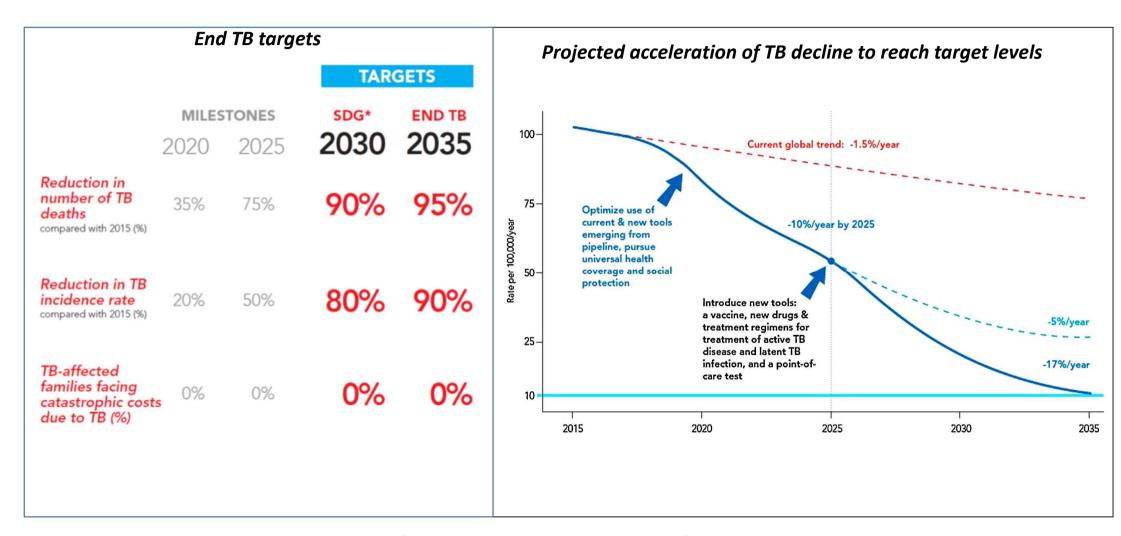
2011

Gene Xpert replaces microscopy

2016–2050: Sustainable Development Goals and End TB Strategy

Shift from control towards elimination; advancing research and innovation: natural history; diagnostics, shortening regimen and vaccine development; addressing broader determinants of TB.

2019-2021


COVID-19 pandemic & service disruptions

2016 Universal ART

2025

Global health funding cuts

Evolution of TB control and response eras

The End TB Strategy. Global strategy and targets for TB prevention, care and control after 2015

TB Vaccine Pipeline

TB vaccine candidates in active clinical trials

There are 12 candidates in active clinical trials as of September 2024.

Platform

Mycobacterial - Live attenuated

Mycobacterial - Inactivated

Viral vector

Protein/Adjuvant

RNA

-Mtb

+Mtb

aTBd

MDR

cTB

Trial target population Primary endpoint

People without HIV infection

People without Mtb infection

People with Mtb infection People with active TB disease

People cured of active TB

People with MDR-TB

Stop B Partnership

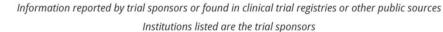
WORKING GROUP ON

Sf Elderly Safety Adults Im Immunogenicity POI Prevention of Infection Adolescents Children POD Prevention of Disease Infants POR Prevention of Recurrence People living with HIV Thp Therapeutic

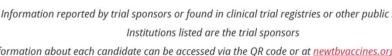
BNT164a1 BioNTech BNT164b1 BioNTech TB/FLU-05E Res Inst of Influenza H107/CAF10b

Phase 1

AEC/BC02


Phase 2a

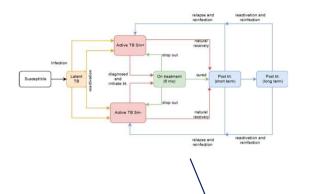
RUTI® Archivel Farma aTBd MDR

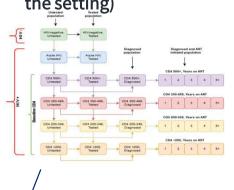

Phase 2b

(traveler vaccine) GamTBvac Gamaleya Res Centre Immuvac (MIP) **ICMR** VPM1002 POD M72/AS01E

Phase 3

Additional information about each candidate can be accessed via the QR code or at newtovaccines.org/tb-vaccine-pipeline/





Mathematical modelling

TB natural history

HIV natural history (important co-morbidities for the setting)

Calibration to local data

TB treatment initiations

TB deaths from the vital register

Microbiological tests

TB prevalence

Stakeholder and expert

inputs

Country specific model inputs: Demographic and epidemiological

Demographic data

Age, sex-structures

Effects of risk factors/interventions

Epidemiological parameters

TB model

algorithms

Mathematical modelling

Target population

• The population group prioritised for the vaccine e.g., elderly, adolescents, adults; HIV positive/negative

Implementation strategy

- How the vaccine will be rolled out
- What % of target population should receive it
- How to integrate the vaccine program in health system

Population health impact

• Estimate and predict the future population-level health related outcomes (e.g., incidence, mortality,) as a result of the vaccine

Cost effectiveness

- What is the cost of implementing the vaccine programme in relation to changes in health outcomes.
- What is the optimal combination of TB interventions (the vaccine, preventative therapy, screening, diagnostic, treatment regimen)

Recent TB vaccine modelling studies

Science Translational Medicine

ARTICLES · Volume 11, Issue 4, E546-E555, April 2023 · Open Access

countries: a modelling study

RESEARCH ARTICLE | TUBERCULOSIS

Potential impact of tuberculosis vaccines in China, South Africa, and India

REBECCA C. HARRIS (6), TOM SUMNER (6), GWENAN M. KNIGHT (6), HUI ZHANG (6), AND RICHARD G. WHITE (6) Authors Info & Affiliations

Article Open access Published

EPIDEMIOLOGY AND SOCIAL

The potential impact of new tuberculosis vaccines on the burden of tuberculosis in people with HIV in South Africa

Feasibility of nove South Africa: a co vaccines analysis

An investment case for new tuberculosis

The impact of alternative delivery strategies for novel tuberculosis vaccines in low-income and middle-income

Rebecca A Clark, MSc ○ a,b,c,d · Christinah Mukandavire, PhD a,b,c · Allison Portnoy, ScD e ·

Andrew Iskauskas, PhD g. Roel Bakker, PhD a,b,c,h. Matthew Quaife, PhD a,b,c. Shelly Malhotra, MA i.

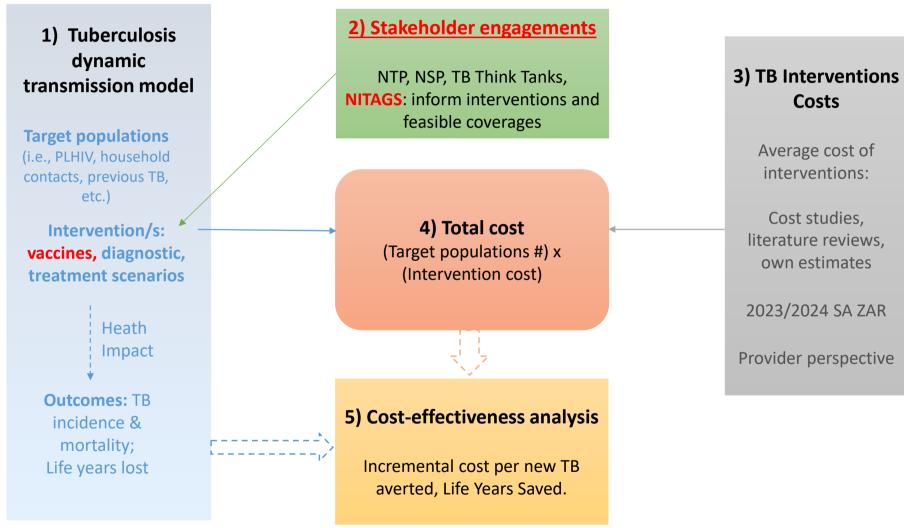
Nebiat Gebreselassie, PhD ^j· Matteo Zignol, MD ^j· Raymond C W Hutubessy, PhD ^k· Birgitte Giersing, PhD ^l Mark Jit, PhD b,c · Rebecca C Harris, PhD a,b,c,m · Nicolas A Menzies, PhD e,f · Richard G White, PhD a,b,c

Chathika K Weerasuriya, PhD a,b,c · Arminder Deol, PhD a,b,c · Danny Scarponi, PhD a,b,c ·

cination in dget impact

ebecca C. Harris, Michele

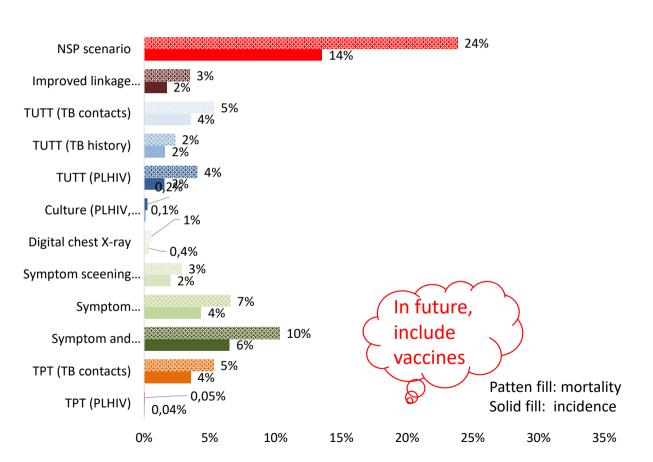
Sumner, Toma,b,c; Clark, Rebecca A.a,b,c; Prys-Jones, Tomos O.a,b,c; Bakker, Roela,b,c,d; Churchyard, Sahan Jayawardana . Chathika Gavine,f,g; White, Richard G.a,b,c Tameris, Dereck Tait, Richard G. W

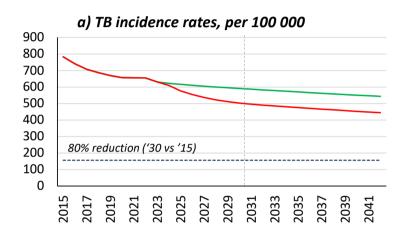

► Front Public Health. 2024 Feb 23;12:1302688. doi: 10.3389/fpubh.2024.1302688 🗷

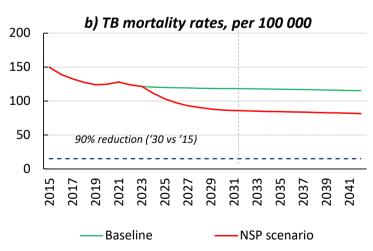
Model-based impact evaluation of new tuberculosis vaccines in aging populations under different modeling scenarios: the case of China

Mario Tovar 1,2,*, Joaquín Sanz 1,2, Yamir Moreno 1,2,3

Case study of using mathematical modelling to inform TB national planning

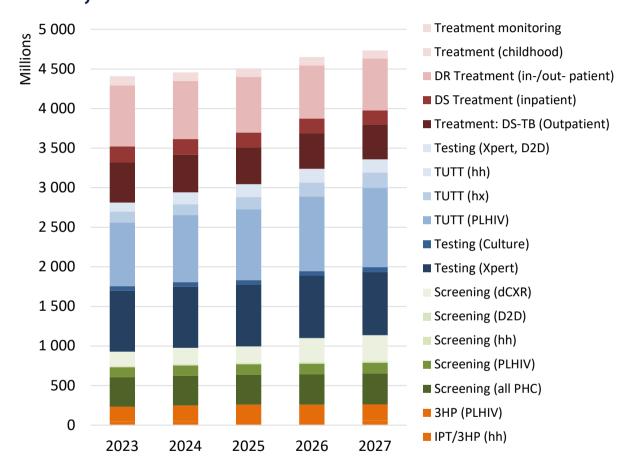

Estimating TB programme costs and health impact




Health Economics & Epidemiology Research Office, 2023 Kubjane M, Jamieson L, Hirasen K, Coetzee L, Ramushu C, Evans D, Naidoo P, Johnson L, Meyer-Rath G

Projected impact of TB interventions under National Strategic Plans, South Africa

Percent reductions in TB incidence and mortality due to interventions, (2023-2042)



Health Economics & Epidemiology Research Office, 2023 Kubjane M, Jamieson L, Hirasen K, Coetzee L, Ramushu C, Evans D, Naidoo P, Johnson L, Meyer-Rath G

Projected impact of TB interventions under National Strategic Plans, South Africa

- > R4.4-R4.7 B/year; R22.8 B over 2023-2027
- > Testing and Treatment driver of costs

Interventions (average coverage per year) – from most cost-effective to least cost-effective	Cost/LYS (2021/2022 ZAR)
Symptom (38 million screens) and Xpert (3.9 million tests)	2160
TUTT for TB contacts (+0.49 million Xpert tests)	2 385
Symptom screening for TB contacts (+0.49 million screens)	2 446
Improved linkage to treatment (reduce ILTFU by 50%)	2 505
TPT for TB contacts (0.23 million initiated)	3 900
TUTT for those with TB history (+0.37 million Xpert tests)	5 400
Door-to-door symptom screening (5.8 million screens)	7575
TUTT for PLHIV (+3.7 million Xpert tests)	20 970
Culture testing for PLHIV with negative result on Xpert (0.67 million)	40 095
Door-to-door screening with digital chest X-ray (0.55 million)	67 200
TPT for PLHIV (0.41 million initiated)	133 732
NSP scenario: all individual interventions above combined	8 855

Conclusions

- Mathematical modelling is a valuable tool for informed decision-making in TB vaccine planning.
- ➤ Collaboration between NITAGs, policymakers, and modellers is essential for integrating modelling evidence into immunization strategies.
- > Adapting models to local contexts is critical for effective vaccine deployment.
- > Strengthening data collection is necessary to improve model inputs and accuracy.
- Building capacity in mathematical modelling will enhance vaccine decision-making and support global TB control efforts.