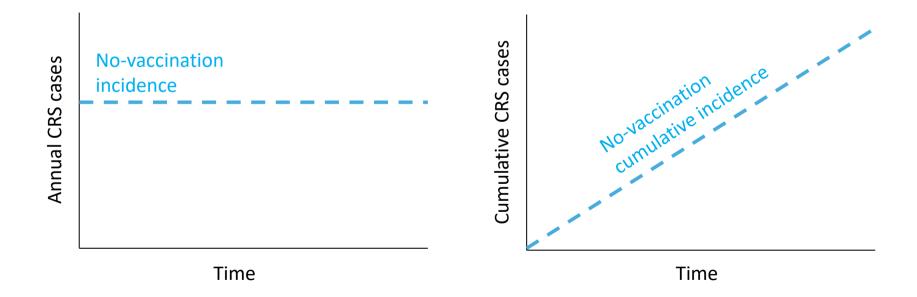
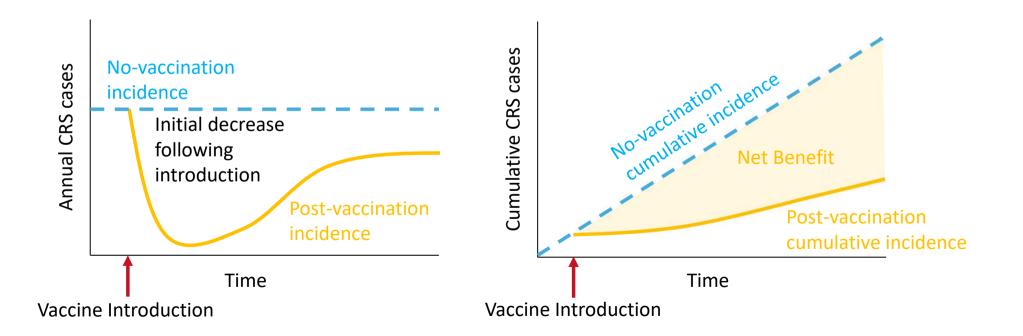
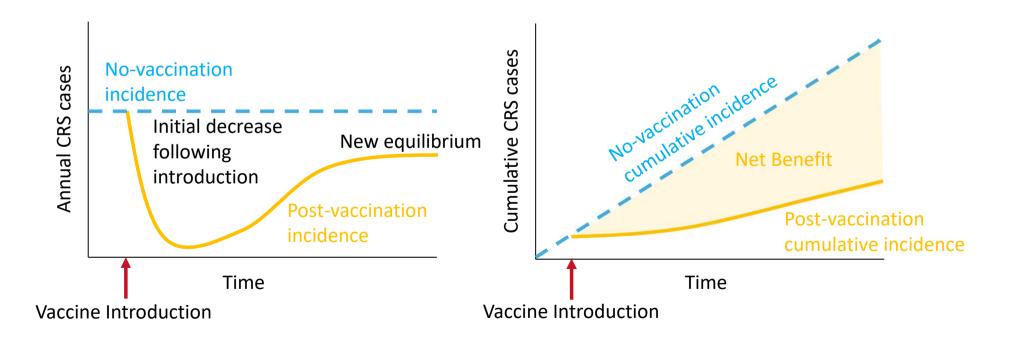
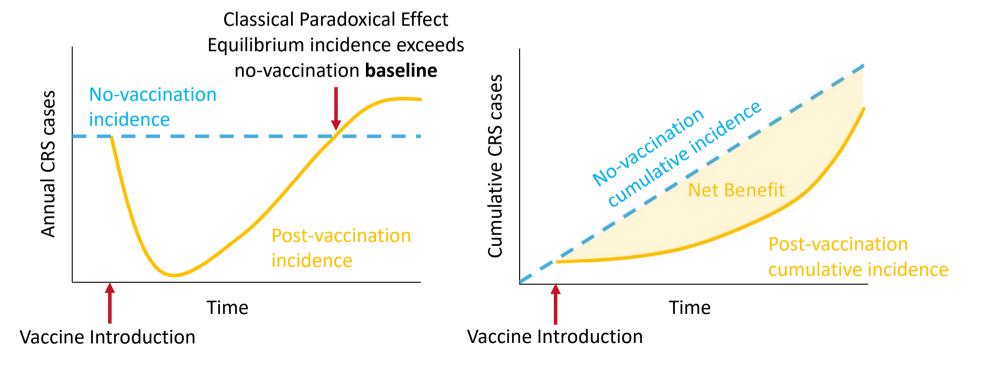


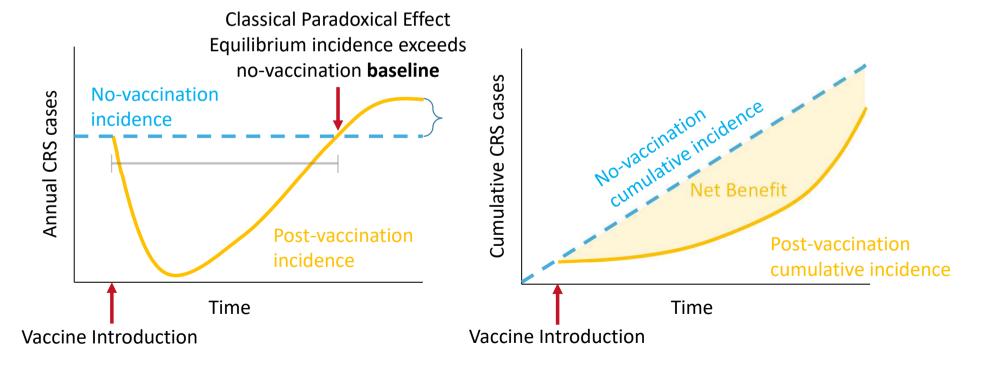
Modelling to inform rubella vaccine introduction: latest vaccination coverage threshold from modelling work


Matthew Ferrari, Pennsylvania State University Emilia Vynnycky, UK Health Security Agency (UKHSA) Amy Winter, University of Georgia (UGA)

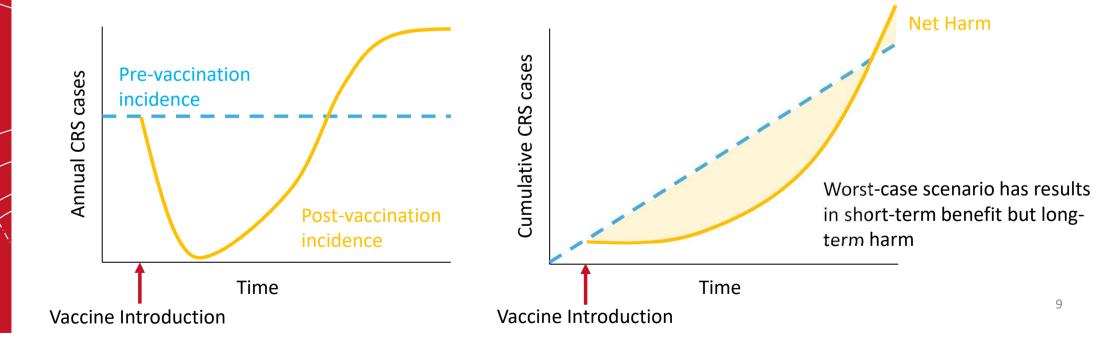

Introduction and Motivation


- A "paradoxical effect" for rubella occurs when low-to-intermediate RCV coverage leads to a rebound in CRS burden that exceeds no-vaccination levels.
 - Effect has support both theoretically and empirically


- A "paradoxical effect" for rubella occurs when low-to-intermediate RCV coverage leads to a rebound in CRS burden that exceeds no-vaccination levels.
 - Effect has support both theoretically and empirically


- A "paradoxical effect" for rubella occurs when low-to-intermediate RCV coverage leads to a rebound in CRS burden that exceeds no-vaccination levels.
 - Effect has support both theoretically and empirically

- A "paradoxical effect" for rubella occurs when low-to-intermediate RCV coverage leads to a rebound in CRS burden that exceeds no-vaccination levels.
 - Effect has support both theoretically and empirically

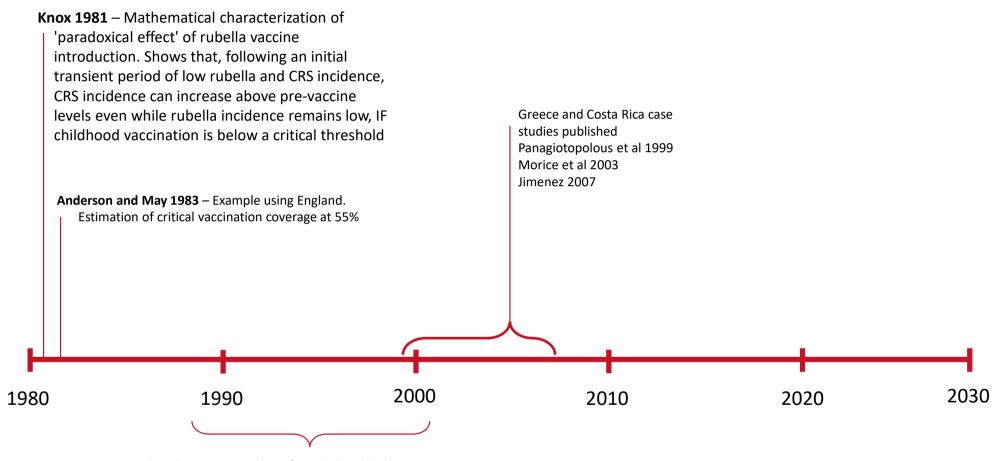

- A "paradoxical effect" for rubella occurs when low-to-intermediate RCV coverage leads to a rebound in CRS burden that exceeds no-vaccination levels.
 - Effect has support both theoretically and empirically

- A "paradoxical effect" for rubella occurs when low-to-intermediate RCV coverage leads to a rebound in CRS burden that exceeds no-vaccination levels.
 - Effect has support both theoretically and empirically

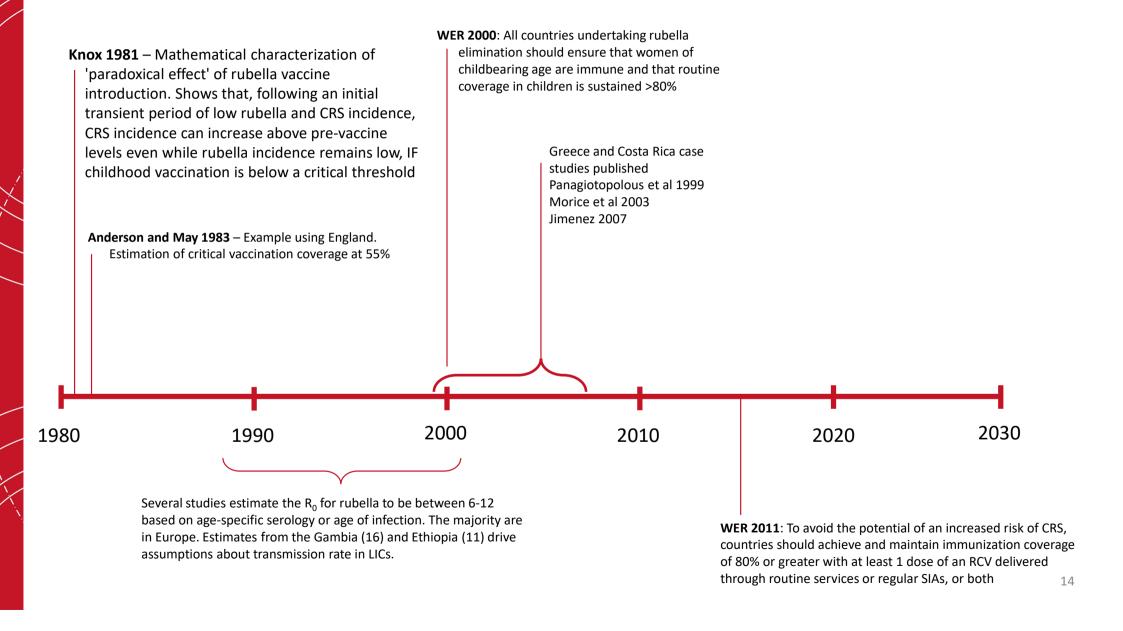
- A "paradoxical effect" for rubella occurs when low-to-intermediate RCV coverage leads to a rebound in CRS burden that exceeds no-vaccination levels.
 - Effect has support both theoretically and empirically

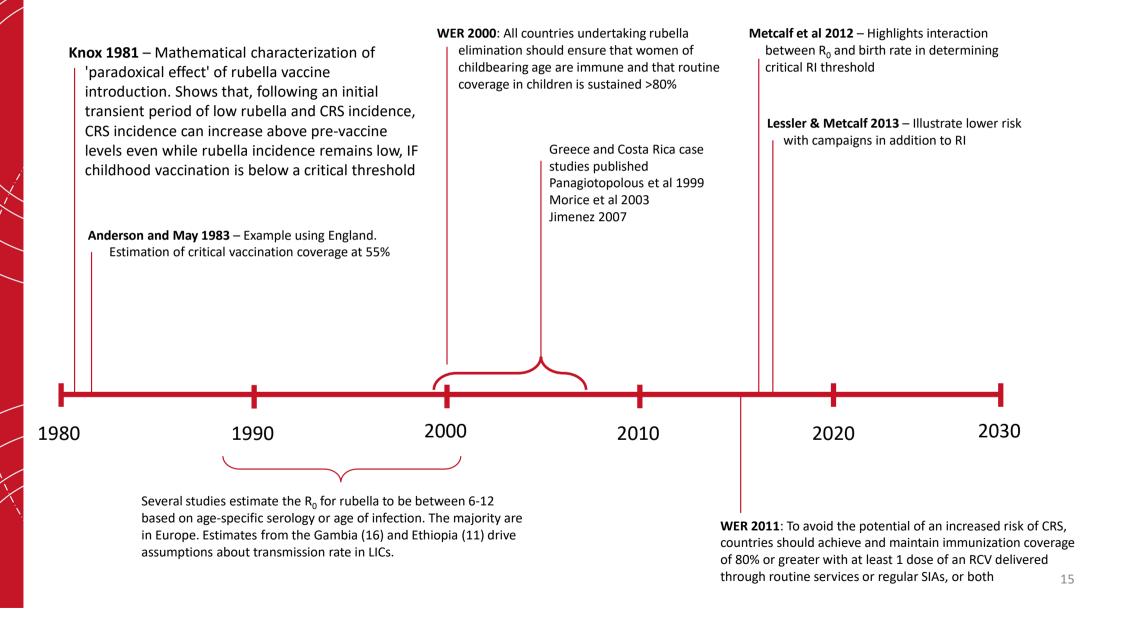
- A "paradoxical effect" for rubella occurs when low-to-intermediate RCV coverage leads to a rebound in CRS burden that exceeds no-vaccination levels.
 - Effect has support both theoretically and empirically
 - Actual coverage threshold depends on context (R₀ and demographics)
- History of understanding and programmatic impact:
 - Theory was developed in settings where CRS was rare
 - Theory for long-term impact was first described in early 80s

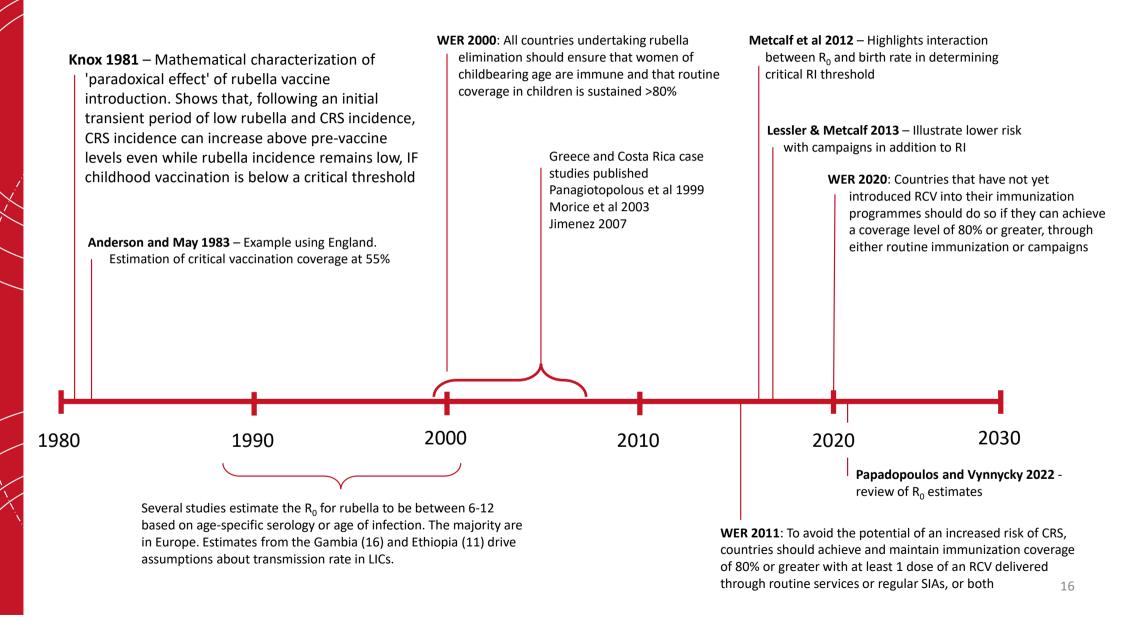
Knox 1981 – Mathematical characterization of 'paradoxical effect' of rubella vaccine introduction. Shows that, following an initial transient period of low rubella and CRS incidence, CRS incidence can increase above pre-vaccine levels even while rubella incidence remains low, IF childhood vaccination is below a critical threshold Anderson and May 1983 – Example using England. Estimation of critical vaccination coverage at 55% 2000 2030 1980 1990 2010 2020


Knox 1981 – Mathematical characterization of

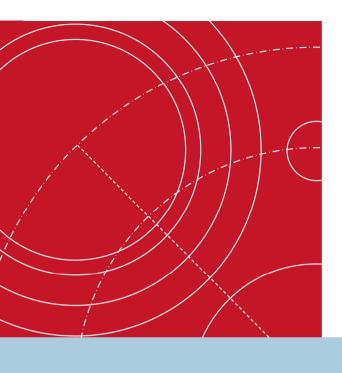
'paradoxical effect' of rubella vaccine
introduction. Shows that, following an initial
transient period of low rubella and CRS incidence,
CRS incidence can increase above pre-vaccine
levels even while rubella incidence remains low, IF
childhood vaccination is below a critical threshold


Anderson and May 1983 – Example using England.
Estimation of critical vaccination coverage at 55%


1980 1990 2000 2010 2020 2030


Several studies estimate the R_0 for rubella to be between 6-12 based on age-specific serology or age of infection. The majority are in Europe. Estimates from the Gambia (16) and Ethiopia (11) drive assumptions about transmission rate in LICs.

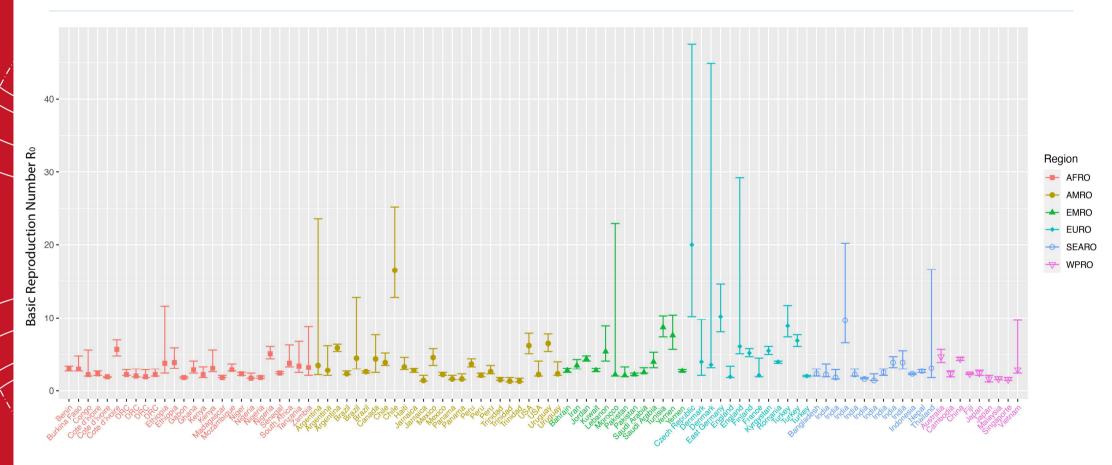
Several studies estimate the R_0 for rubella to be between 6-12 based on age-specific serology or age of infection. The majority are in Europe. Estimates from the Gambia (16) and Ethiopia (11) drive assumptions about transmission rate in LICs.


Why This Work Now?

Goal of these collected modelling activities is to update the understanding of the risks and consequences of RCV introduction with contemporary epidemiological data and programmatic activities

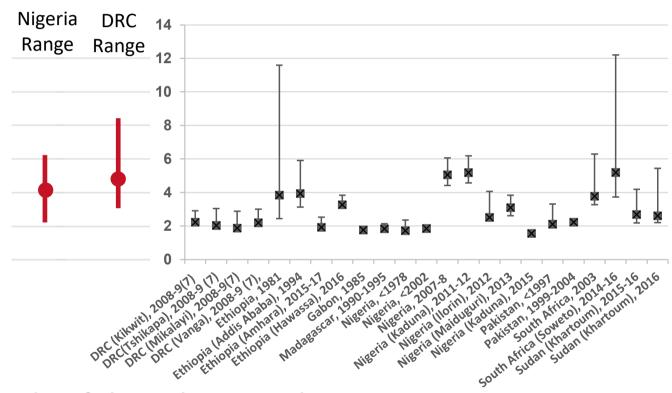
Provide a critical evaluation of the current guidance as a barrier to CRS control and rubella elimination

New Insights from Modeling Activities


- 1. Current CRS burden is significant and avoidable
- 2. R_0 for rubella in countries yet to introduce RCV is lower than previous assumptions, even at a sub-national level
- 3. Expected birth rate declines and aging populations will increase CRS rate in the absence of vaccination
- 4. RI is currently sufficient to prevent paradoxical effect in most countries. RI plus campaigns prevent paradoxical effect in all countries.

Rubella transmission and demography

Review of R0 estimates

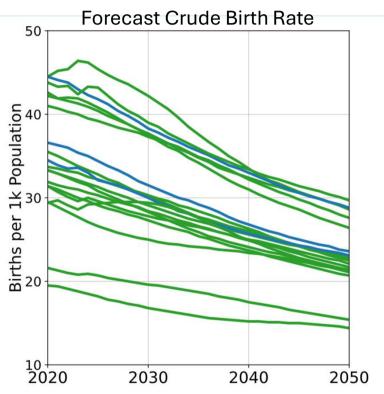


Focus on 19 countries

Updated from *PLoS Comp Bio* 2022; 18(3): e1008858 with data in *Int J Infect Dis* 2023; 137: 149-156

The range of subnational R₀ estimates from Nigeria and DRC are consistent with the distribution of national-level estimates from Papadopoulos and Vynnycky (from serology).

No indication that subnational hotspots are outside the range of national-level estimates.

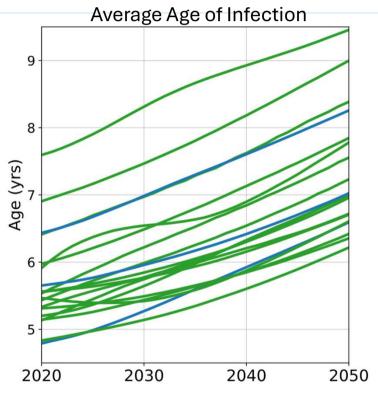

- These confirm the magnitude of the subnational estimates.
- They suggest the risk of paradoxical effect is low.

Projections assuming no vaccination

Birth rates are expected to decline in both the AFRO and EMRO regions over the coming decades.

When birth rates decline:

- Adults become a larger fraction of the overall population.
- Average transmission rates decrease, because adults have fewer contacts than children.

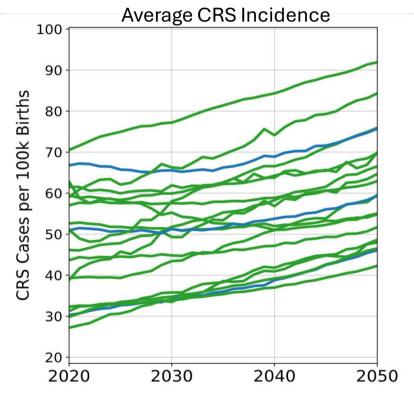


Projections for all 19 countries UN WPP 2024 Revision

Projections assuming no vaccination

Birth rates are expected to decline in both the AFRO and EMRO regions over the coming decades.

Lower transmission rates mean a decreased force of infection, leading to greater average ages of infection and greater susceptibility later in life.

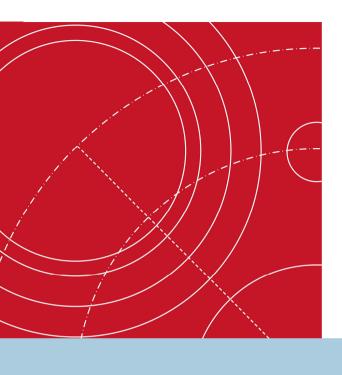

Projections for all 19 countries UGA model: No Vaccination

Projections assuming no vaccination

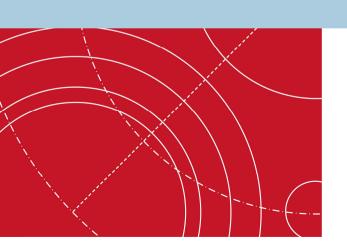
Birth rates are expected to decline in both the AFRO and EMRO regions over the coming decades.

Greater susceptibility in older age groups increases the expected rate of CRS in the absence of vaccination.

Each 10% decline in crude birth rate leads to an increase of around 10% in the rate of CRS.



Projections for all 19 countries UGA model: No Vaccination


Rubella Epidemiology and Demographic Change

Contemporary estimates of rubella transmission rate indicate that 80% criterion is conservative. This holds for subnational analyses of two largest countries among those yet to introduce.

Projected changes in birth rates are expected to lead to increase in CRS rate per 100K births in the absence of vaccination leading to opportunity cost of delayed introduction.

Introduction Scenario Modelling

National Scale Analysis

- National-scale analysis of 19 countries yet to introduce RCV as of start of 2024
- Goal
 - to evaluate future risk of CRS under realistic scenarios of future demographic change
 - and realistic introduction and SIA scenarios consistent with contemporary standard
 - Evaluated multiple scenarios that reflect optimistic to pessimistic assumptions
- All scenarios run using two independent models (UGA and UKHSA)
 - Methods have been reviewed by IVIR-AC and previously presented to SAGE

Simulation Scenarios

	Routine Immunization
1	
2	
3	
4	
5	
6	
7	
8	
9	Mean of WUENIC coverage from 2018-2019
10	
11	
12	
13	
14	
15	
16	

Simulation Scenarios

Campaigns

Target (Coverage
Wide ege renge	90%
Wide age range	80%
Norrow aga ranga	70%
Narrow age range	60%

	Routine Immunization	Introductory Campaign
1		≤ 14y 90% coverage
2		≤ 14y 80% coverage
3		≤ 14y 70% coverage
4		≤ 14y 60% coverage
5		≤ 14y 90% coverage
6		≤ 14y 80% coverage
7		≤ 14y 70% coverage
8	Mean of WUENIC coverage from 2018-2019 ≤ 4y 80% cov ≤ 4y 70% cov ≤ 4y 60% cov ≤ 14y 90% cov ≤ 14y 80% cov ≤ 14y 70% cov	≤ 14y 60% coverage
9		≤ 4y 90% coverage
10		≤ 4y 80% coverage
11		≤ 4y 70% coverage
12		≤ 4y 60% coverage
13		≤ 14y 90% coverage
14		≤ 14y 80% coverage
15		≤ 14y 70% coverage
16		≤ 14y 60% coverage
17		None

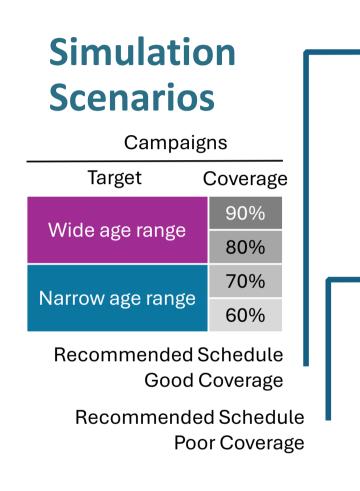
Simulation Scenarios

Campaigns

Target	Coverage
Wide ego renge	90%
Wide age range	80%
Narrow ago rango	70%
Narrow age range	60%

Post-introduction continued campaigns are assumed to be conducted every 4 years

	Routine Immunization	Introductory Campaign	Continued Campaigns
1		≤ 14y 90% coverage	≤ 4y 90% coverage
2		≤ 14y 80% coverage	≤ 4y 90% coverage
3		≤ 14y 70% coverage	≤ 4y 90% coverage
4		≤ 14y 60% coverage	≤ 4y 90% coverage
5		≤ 14y 90% coverage	≤ 4y 60% coverage
6		≤ 14y 80% coverage	≤ 4y 60% coverage
7		≤ 14y 70% coverage	≤ 4y 60% coverage
8	Mean of WUENIC coverage from 2018-2019	≤ 14y 60% coverage	≤ 4y 60% coverage
9		≤ 4y 90% coverage	≤ 4y 90% coverage
10		≤ 4y 80% coverage	≤ 4y 80% coverage
11		≤ 4y 70% coverage	≤ 4y 70% coverage
12		≤ 4y 60% coverage	≤ 4y 60% coverage
13		≤ 14y 90% coverage	None
14		≤ 14y 80% coverage	None
15		≤ 14y 70% coverage	None
16		≤ 14y 60% coverage	None
17		None	None


Simulation Scenarios

Campaigns

Target Coverage
Wide age range 90%
80%
Narrow age range 60%

Recommended Schedule Good Coverage

	Routine Immunization	Introductory Campaign	Continued Campaigns
1		≤ 14y 90% coverage	≤ 4y 90% coverage
2		≤ 14y 80% coverage	≤ 4y 90% coverage
3		≤ 14y 70% coverage	≤ 4y 90% coverage
4		≤ 14y 60% coverage	≤ 4y 90% coverage
5		≤ 14y 90% coverage	≤ 4y 60% coverage
6		≤ 14y 80% coverage	≤ 4y 60% coverage
7		≤ 14y 70% coverage	≤ 4y 60% coverage
8	Mean of WUENIC coverage from 2018-2019	≤ 14y 60% coverage	≤ 4y 60% coverage
9		≤ 4y 90% coverage	≤ 4y 90% coverage
10		≤ 4y 80% coverage	≤ 4y 80% coverage
11		≤ 4y 70% coverage	≤ 4y 70% coverage
12		≤ 4y 60% coverage	≤ 4y 60% coverage
13		≤ 14y 90% coverage	None
14		≤ 14y 80% coverage	None
15		≤ 14y 70% coverage	None
16		≤ 14y 60% coverage	None
17		None	None

		Routine Immunization	Introductory Campaign	Continued Campaigns	
>	1		≤ 14y 90% coverage	≤ 4y 90% coverage	
	2		≤ 14y 80% coverage	≤ 4y 90% coverage	
	3		≤ 14y 70% coverage	≤ 4y 90% coverage	
	4		≤ 14y 60% coverage	≤ 4y 90% coverage	
	5		≤ 14y 90% coverage	≤ 4y 60% coverage	
	6		≤ 14y 80% coverage	≤ 4y 60% coverage	
	7		≤ 14y 70% coverage	≤ 4y 60% coverage	
	8		≤ 14y 60% coverage	≤ 4y 60% coverage	
	9	Mean of WUENIC coverage from 2018-2019	≤ 4y 90% coverage	≤ 4y 90% coverage	
	10		≤ 4y 80% coverage	≤ 4y 80% coverage	
	11		≤ 4y 70% coverage	≤ 4y 70% coverage	
	12		≤ 4y 60% coverage	≤ 4y 60% coverage	
	13		≤ 14y 90% coverage	None	
	14		≤ 14y 80% coverage	None	
	15		≤ 14y 70% coverage	None	
	16		≤ 14y 60% coverage	None	
	17		None	None	32
					۷۷

Simulation Scenarios

Campaigns

Target Coverage

Wide age range $\frac{90\%}{80\%}$ Narrow age range $\frac{70\%}{60\%}$

Narrow Campaigns only

	Routine Immunization	Introductory Campaign	Continued Campaigns
1		≤ 14y 90% coverage	≤ 4y 90% coverage
2		≤ 14y 80% coverage	≤ 4y 90% coverage
3		≤ 14y 70% coverage	≤ 4y 90% coverage
4		≤ 14y 60% coverage	≤ 4y 90% coverage
5		≤ 14y 90% coverage	≤ 4y 60% coverage
6		≤ 14y 80% coverage	≤ 4y 60% coverage
7		≤ 14y 70% coverage	≤ 4y 60% coverage
8		≤ 14y 60% coverage	≤ 4y 60% coverage
9	Mean of WUENIC coverage from 2018-2019	≤ 4y 90% coverage	≤ 4y 90% coverage
10		≤ 4y 80% coverage	≤ 4y 80% coverage
11		≤ 4y 70% coverage	≤ 4y 70% coverage
12		≤ 4y 60% coverage	≤ 4y 60% coverage
13		≤ 14y 90% coverage	None
14		≤ 14y 80% coverage	None
15		≤ 14y 70% coverage	None
16		≤ 14y 60% coverage	None
17		None	None 33

Simulation Scenarios

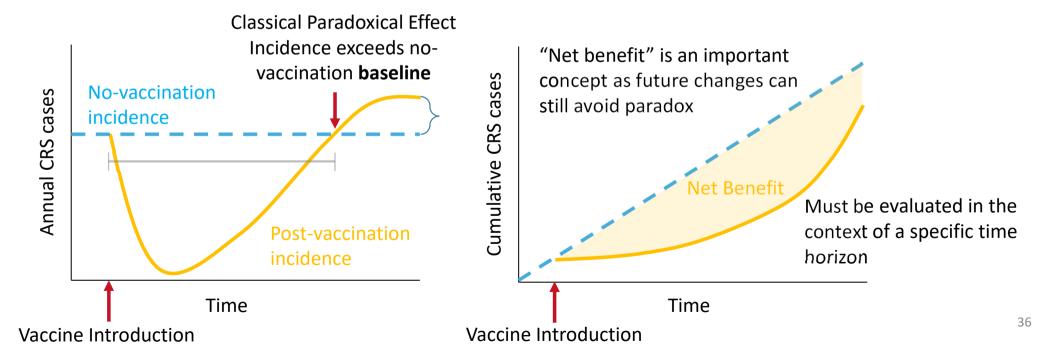
Campaigns

Target	Coverage
Wide ego renge	90%
Wide age range	80%
Narrow aga ranga	70%
Narrow age range	60%

Introductory wide age Campaigns only

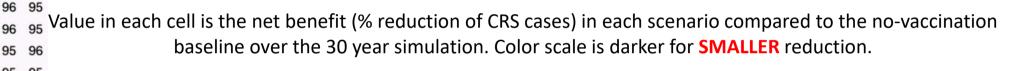
	Routine Immunization	Introductory Campaign	Continued Campaigns
1		≤ 14y 90% coverage	≤ 4y 90% coverage
2		≤ 14y 80% coverage	≤ 4y 90% coverage
3		≤ 14y 70% coverage	≤ 4y 90% coverage
4		≤ 14y 60% coverage	≤ 4y 90% coverage
5		≤ 14y 90% coverage	≤ 4y 60% coverage
6		≤ 14y 80% coverage	≤ 4y 60% coverage
7		≤ 14y 70% coverage	≤ 4y 60% coverage
8		≤ 14y 60% coverage	≤ 4y 60% coverage
9	Mean of WUENIC coverage from 2018-2019	≤ 4y 90% coverage	≤ 4y 90% coverage
10		≤ 4y 80% coverage	≤ 4y 80% coverage
11		≤ 4y 70% coverage	≤ 4y 70% coverage
12		≤ 4y 60% coverage	≤ 4y 60% coverage
13		≤ 14y 90% coverage	None
14		≤ 14y 80% coverage	None
15		≤ 14y 70% coverage	None
16		≤ 14y 60% coverage	None
17		None	None 34

Simulation Scenarios


Campaigns

Target	Coverage
Wide oge renge	90%
Wide age range	80%
Narrow ago rango	70%
Narrow age range	60%

	Routine Immunization	Introductory Campaign	Continued Campaigns
1		≤ 14y 90% coverage	≤ 4y 90% coverage
2		≤ 14y 80% coverage	≤ 4y 90% coverage
3		≤ 14y 70% coverage	≤ 4y 90% coverage
4		≤ 14y 60% coverage	≤ 4y 90% coverage
5		≤ 14y 90% coverage	≤ 4y 60% coverage
6		≤ 14y 80% coverage	≤ 4y 60% coverage
7		≤ 14y 70% coverage	≤ 4y 60% coverage
8		≤ 14y 60% coverage	≤ 4y 60% coverage
9	Mean of WUENIC coverage from 2018-2019	≤ 4y 90% coverage	≤ 4y 90% coverage
10		≤ 4y 80% coverage	≤ 4y 80% coverage
11		≤ 4y 70% coverage	≤ 4y 70% coverage
12		≤ 4y 60% coverage	≤ 4y 60% coverage
13		≤ 14y 90% coverage	None
14		≤ 14y 80% coverage	None
15		≤ 14y 70% coverage	None
16		≤ 14y 60% coverage	None
17		None	None 35


Routine Only, No campaigns

- A "paradoxical effect" for rubella occurs when low-to-intermediate RCV coverage leads to a rebound in CRS burden that exceeds no-vaccination levels.
 - Effect has support both theoretically and empirically

Net Benefit of CRS Reduction Over 30 Years Compared to No-Vaccination Baseline

Results from each model are presented in columns.
Left is UGA, Right is UKHSA

SCENARIO

90%

90%

60%

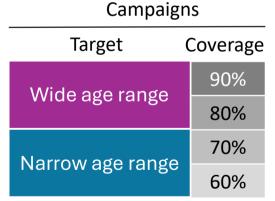
60% 60%

60%

60% 90%

70%

60%


AFG

91 91

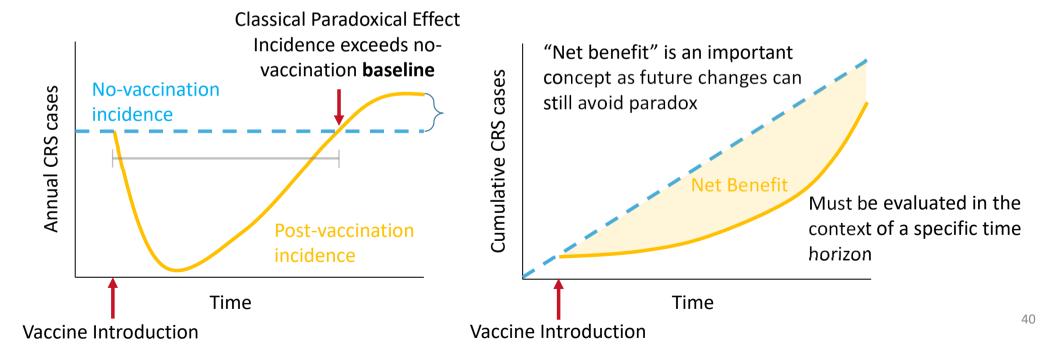
79

59 76

48 57

Net Benefit of CRS Reduction Over 30 Years Compared to No-Vaccination Baseline

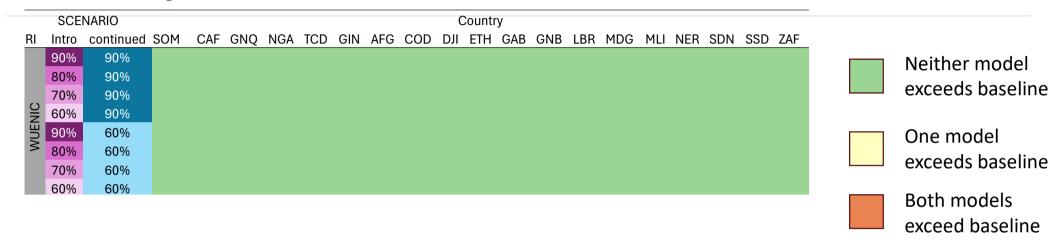
-	SCEN	ARIO	Α	FG	С	AF	С	OD		ונס	E	TH	G	AB	G	IN	G	NB	G	NQ	LI	BR	M	DG	M	1LI	N	ER	N	GA	SI	DN	S	ОМ	S	SD	T	CD	Z	AF .
RI	Intro	Continued	UGA	UKHSA																																				
	90%	90%	96	96	89	96	97	97	98	96	97	96	98	97	91	96	98	97	68	97	97	96	97	96	97	97	97	97	70	96	97	96	67	97	77	96	71	96	96	96
	80%	90%	96	96	89	96	97	97	98	96	96	95	98	97	90	95	98	96	67	96	97	96	97	96	96	96	97	97	70	96	97	96	67	96	77	96	71	96	96	95
	70%	90%	96	95	88	95	96	97	98	96	96	94	98	97	90	95	98	95	68	96	97	95	97	96	96	96	97	96	70	96	97	95	67	96	77	95	71	95	96	94
	60%	90%	96	95	87	94	96	96	98	96	96	93	98	97	89	94	98	94	68	95	97	94	97	96	96	95	97	96	70	95	97	95	67	95	77	94	70	95	96	94
	90%	60%	95	96	73	95	94	97	98	96	94	95	95	97	83	95	98	97	68	97	97	96	97	96	95	96	97	97	70	96	97	96	67	94	77	96	67	96	96	95
1	80%	60%	95	95	72	94	93	97	98	96	93	94	94	97	83	94	98	96	67	95	97	96	97	96	95	96	97	97	70	95	97	96	67	93	77	95	67	95	96	95
	70%	60%	94	95	71	93	92	96	98	96	92	92	93	97	82	93	98	95	68	94	96	95	96	96	94	95	96	96	70	95	97	95	67	92	77	94	67	94	96	94
NIC	60%	60%	94	94	68	92	91	96	98	96	91	91	93	97	81	92	98	94	68	93	96	94	96	96	93	94	96	95	70	95	97	95	67	90	77	93	67	92	96	93
WUE	90%	90%	95	94	84	92	95	96	97	96	95	90	98	96	84	91	97	92	61	91	97	91	96	96	94	92	96	93	63	94	96	93	59	95	72	91	63	92	90	91
	80%	80%	95	94	84	91	94	96	97	94	94	89	97	96	84	91	97	91	61	91	96	91	96	95	94	92	96	93	63	94	96	93	59	94	72	91	63	92	89	90
п	70%	70%	94	93	74	89	91	95	97	93	92	88	94	96	82	89	97	91	60	90	96	90	95	95	92	92	95	93	63	93	96	92	59	92	72	90	63	90	88	88
	60%	60%	91	91	60	85	87	95	97	92	86	84	89	95	73	85	96	90	61	87	94	89	94	95	88	90	94	92	63	91	95	92	59	84	72	88	59	87	87	88
	90%		66	86	23	68	53	96	98	96	53	79	51	96	29	73	90	95	18	79	77	91	85	96	58	92	84	96	10	85	97	96	13	58	40	87	13	70	95	92
	80%		65	83	22	63	48	95	98	95	48	74	46	96	29	68	88	93	18	75	74	90	83	96	57	90	82	95	10	82	97	96	13	51	40	84	13	65	95	90
	70%		62	79	19	58	44	94	98	93	43	69	42	96	28	63	86	91	17	70	71	87	81	95	53	88	79	94	10	80	97	95	13	44	40	81	13	59	95	88
	60%		59	76	14	52	39	94	98	92	39	64	37	95	24	58	85	90	18	66	68	85	80	95	49	86	77	93	10	76	96	94	13	37	40	78	12	54	93	86
			48	57	1	26	28	84	91	77	26	42	25	89	11	32	74	75	9	41	56	69	67	89	37	70	68	84	1	56	89	89	3	11	33	58	1	29	77	71


Value in each cell is the net benefit (% reduction of CRS cases) in each scenario compared to the no-vaccination baseline over the 30 year simulation. Color scale is darker for **SMALLER** reduction.

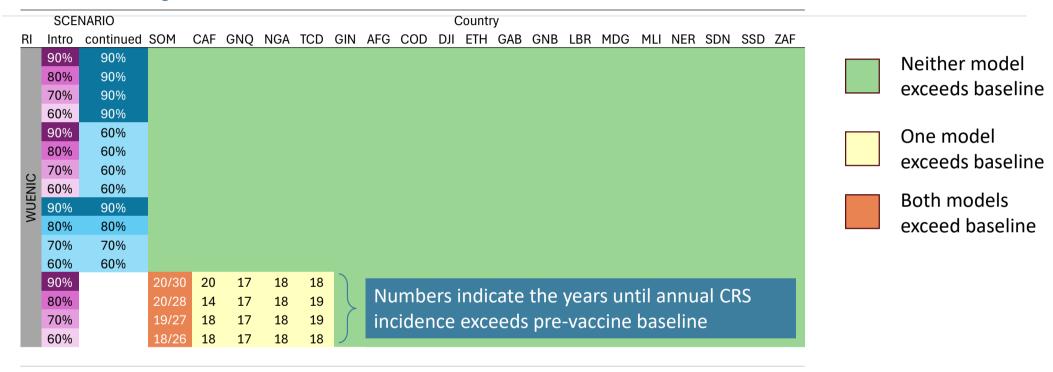
Net Benefit of CRS Reduction Over 30 Years Compared to No-Vaccination Baseline

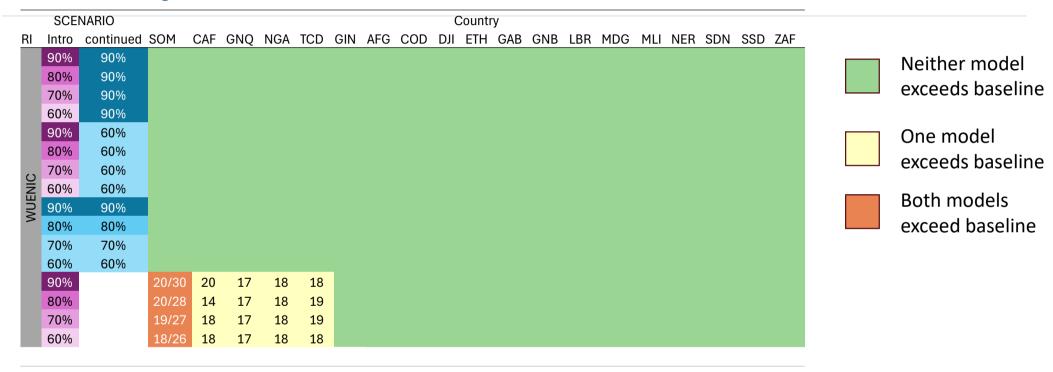
_																																								
	SCEN	ARIO	Α	FG	C	AF	С	OD		ונס	E	TH	G	AB	G	SIN	G	NB	G	NQ	L	BR	MI	OG	M	1LI	Ν	ER	Ν	GA	SI	NC	S	ОМ	S	SD	T	CD	Z	AF
RI	Intro	Continued	UGA	UKHSA																																				
	90%	90%	96	96	89	96	97	97	98	96	97	96	98	97	91	96	98	97	68	97	97	96	97	96	97	97	97	97	70	96	97	96	67	97	77	96	71	96	96	96
	80%	90%	96	96	89	96	97	97	98	96	96	95	98	97	90	95	98	96	67	96	97	96	97	96	96	96	97	97	70	96	97	96	67	96	77	96	71	96	96	95
	70%	90%	96	95	88	95	96	97	98	96	96	94	98	97	90	95	98	95	68	96	97	95	97	96	96	96	97	96	70	96	97	95	67	96	77	95	71	95	96	94
	60%	90%	96	95	87	94	96	96	98	96	96	93	98	97	89	94	98	94	68	95	97	94	97	96	96	95	97	96	70	95	97	95	67	95	77	94	70	95	96	94
ı	90%	60%	95	96	73	95	94	97	98	96	94	95	95	97	83	95	98	97	68	97	97	96	97	96	95	96	97	97	70	96	97	96	67	94	77	96	67	96	96	95
1	80%	60%	95	95	72	94	93	97	98	96	93	94	94	97	83	94	98	96	67	95	97	96	97	96	95	96	97	97	70	95	97	96	67	93	77	95	67	95	96	95
	70%	60%	94	95	71	93	92	96	98	96	92	92	93	97	82	93	98	95	68	94	96	95	96	96	94	95	96	96	70	95	97	95	67	92	77	94	67	94	96	94
ENIC	60%	60%	94	94	68	92	91	96	98	96	91	91	93	97	81	92	98	94	68	93	96	94	96	96	93	94	96	95	70	95	97	95	67	90	77	93	67	92	96	93
	90%	90%	95	94	84	92	95	96	97	96	95	90	98	96	84	91	97	92	61	91	97	91	96	96	94	92	96	93	63	94	96	93	59	95	72	91	63	92	90	91
П	80%	80%	95	94	84	91	94	96	97	94	94	89	97	96	84	91	97	91	61	91	96	91	96	95	94	92	96	93	63	94	96	93	59	94	72	91	63	92	89	90
П	70%	70%	94	93	74	89	91	95	97	93	92	88	94	96	82	89	97	91	60	90	96	90	95	95	92	92	95	93	63	93	96	92	59	92	72	90	63	90	88	88
1	60%	60%	91	91	60	85	87	95	97	92	86	84	89	95	73	85	96	90	61	87	94	89	94	95	88	90	94	92	63	91	95	92	59	84	72	88	59	87	87	88
	90%		66	86	23	68	53	96	98	96	53	79	51	96	29	73	90	95	18	79	77	91	85	96	58	92	84	96	10	85	97	96	13	58	40	87	13	70	95	92
ı	80%		65	83	22	63	48	95	98	95	48	74	46	96	29	68	88	93	18	75	74	90	83	96	57	90	82	95	10	82	97	96	13	51	40	84	13	65	95	90
	70%		62	79	19	58	44	94	98	93	43	69	42	96	28	63	86	91	17	70	71	87	81	95	53	88	79	94	10	80	97	95	13	44	40	81	13	59	95	88
	60%		59	76	14	52	39	94	98	92	39	64	37	95	24	58	85	90	18	66	68	85	80	95	49	86	77	93	10	76	96	94	13	37	40	78	12	54	93	86
			48	57	1	26	28	84	91	77	26	42	25	89	11	32	74	75	9	41	56	69	67	89	37	70	68	84	1	56	89	89	3	11	33	58	1	29	77	71

The Paradoxical Effect

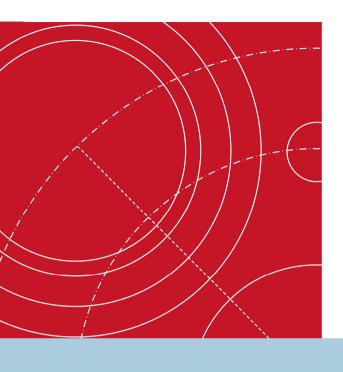

- A "paradoxical effect" for rubella occurs when low-to-intermediate RCV coverage leads to a rebound in CRS burden that exceeds no-vaccination levels.
 - Effect has support both theoretically and empirically

for all 19 countries modeled


60%


This also holds if follow-ups are only 60% coverage

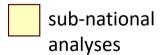
And holds if there is no wide-age range campaign for all follow-up coverages greater than 60%


Without sustained follow-up campaigns, some countries may see an **increase in annual CRS incidence above the no-vaccine baseline** after 14 or more years following introduction, even with a high-quality catch-up campaign.

Without sustained follow-up campaigns, some countries may see an **increase in annual CRS incidence above the no-vaccine baseline** after 14 or more years following introduction, even with a high-quality catch-up campaign. But 14 countries would see no increase in CRS even without follow-up campaigns

And 13 countries would see NOT increase in annual CRS above no-vaccine baseline with introduction via routine immunization only

Summary



New Insights from Modeling Activities

1. Current CRS burden is significant and avoidable

Model to model variability in estimates in the absence of vaccination, but all estimate thousands of cases per year under current conditions

Country	Model	Annual Burden	Lower Bound	Upper Bound
DRC	IDM	15,817	234	53,570
DRC	UGA	3,037	621	6,845
DRC	UKHSA	4,482	0	14,295
Nigeria	PSU	2,479	2,332	2,633
Nigeria	UGA	3,452	1,119	6,776
Nigeria	UKHSA	13,652	1	30,739

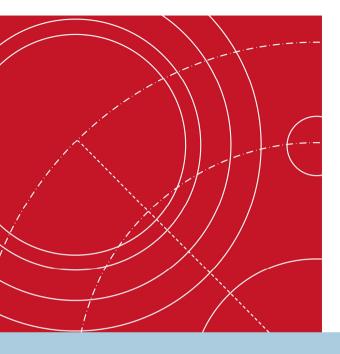
New Insights from Modeling Activities

1. Current CRS burden is significant and avoidable All Models consistently predict reductions under introduction scenarios

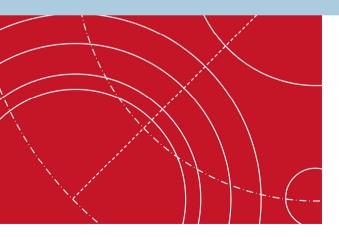
90% CU + 90% FU Ideal Scenario

Country	Model	% reduction
DRC	IDM	99%
DRC	UGA	97%
DRC	UKHSA	97%
Nigeria	PSU	95%
Nigeria	UGA	70%
Nigeria	UKHSA	97%

All models (sub-national and national) predict no increase in CRS above no-vaccination baseline under this scenario


And no increase above no-vaccination baseline even if campaign coverage is as low as 60%

New Insights from Modeling Activities


- 1. Current CRS burden is significant and avoidable
- 2. R_0 for rubella in remaining countries is lower than previous assumptions, even at a sub-national level
- 3. Expected birth rate declines and aging populations will increase CRS risk in the absence of vaccination.

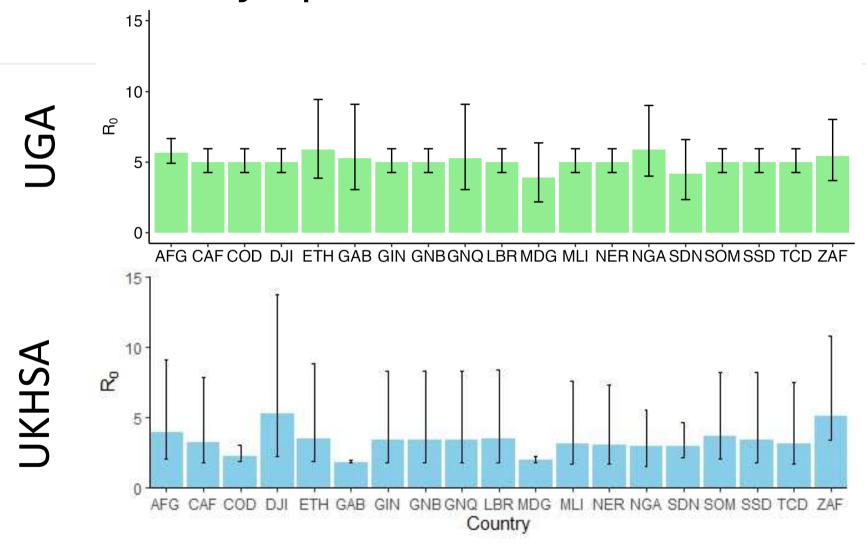
A decision to maintain the status quo will lead to an increase in CRS

- 4. All introduction scenarios lead to significant reductions in CRS over 10 to 15-year and net reductions over 30 years
- 5. RI is currently sufficient to prevent paradoxical effect in most countries. RI plus campaigns prevent paradoxical effect in all countries.

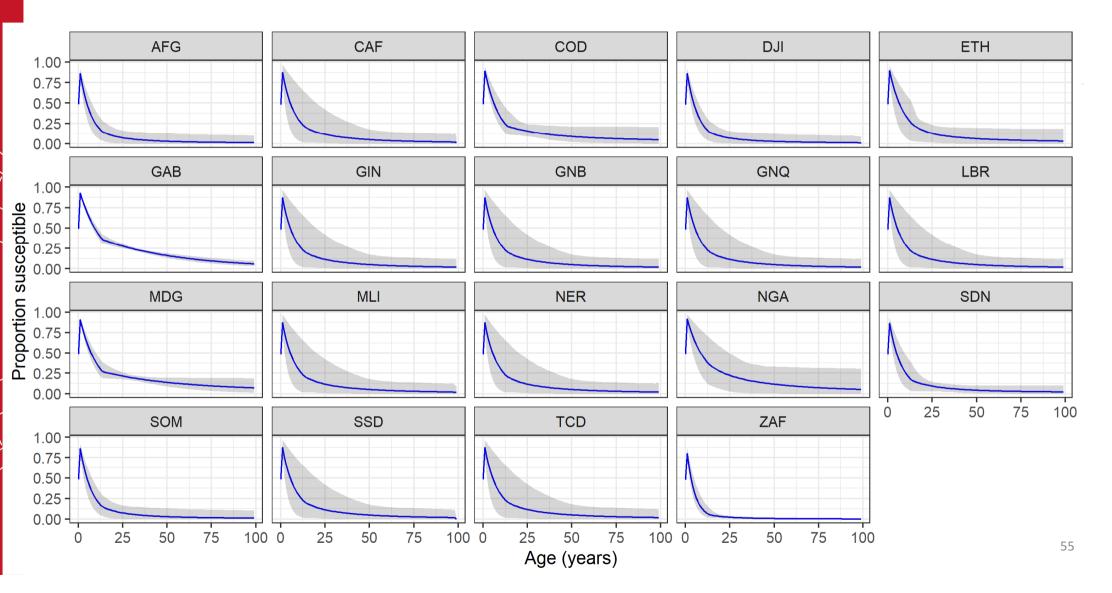
Thank you

Members: Measles and Rubella Partnership as a Working Group of the IA2030Task Team on Congenital Rubella Syndrome Prevention through Rubella Vaccine Introduction

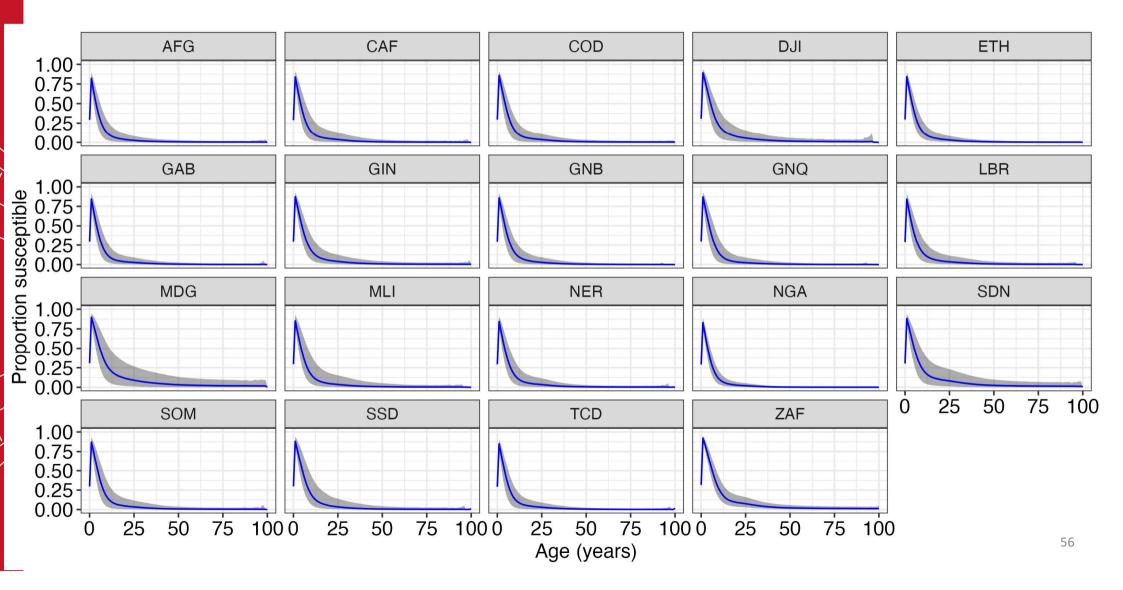
Organization	Participants
BMGF	Kendall Krause, MD, MPH
US CDC	Jim Alexander, MD
	Kim Dautel, PhD
	Christine Dubray, MD
	Jim Goodson, MPH
	Gavin Grant, MD, MPH
	Cyndi Hatcher, MPH
	Christopher Hsu, MD, PhD, MPH
	 Jennifer Knapp, PhD, MPH
	Emmaculate Lebo, MBchB, MPH
	Michelle Morales, MD
	Alan Ou, MD
	Mark Papania, MD, MPH
	Pratima Raghunathan, PhD
	Laura Zimmerman, MPH
Gavi	Marguerite Cornu, MA, MBA
	Arunima Khanduri, MA, MscPH
	Stephen Sosler, PhD, MPH
Institute for Disease	Kurt Frey, ScD, MS
Modelling (IDM)	
Global Experts	Susan Reef, MD
Pennsylvania State	Matthew Ferrari, PhD, MSc.
University	Brian Lambert, MSc.
Program Support Unit of	Lamine Barry
the Measles and Rubella	Clara Gaida, MPH, MPP
Partnership	Andy Gill
UK Health Security	Emilia Vynnycky, PhD
Agency	 Timos Papadopoulos, PhD
University of Georgia	Amy Winter, PhD, MPH
WHO (World Health	Natasha Crowcroft, MD (Cantab), MSc
Organization)	Muhammad Farid, MD, MPH
	Balcha Masresha, MD
	Patrick O'Connor, MD
	Richard Ray Luce Jr., MD



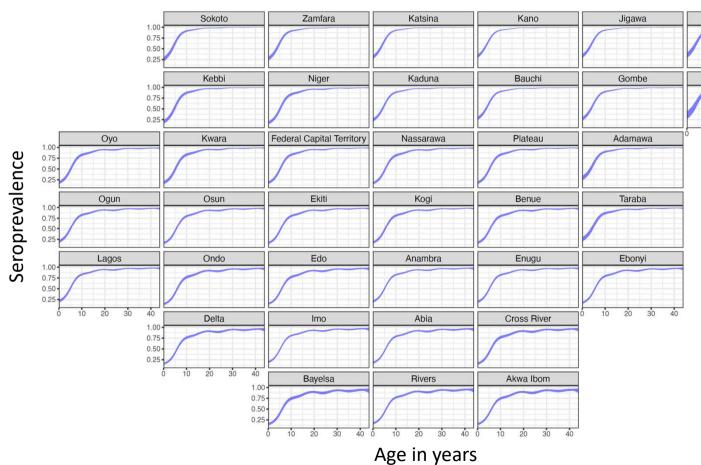
Back-up Slides for Questions


Model Comparison: More similar than different

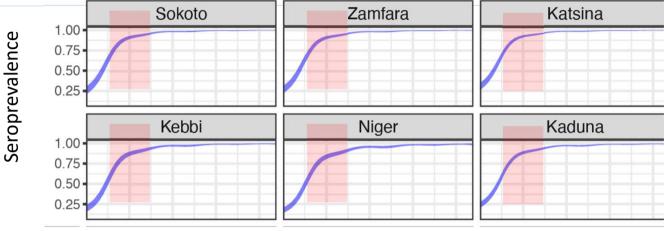
	UGA	UKHSA							
Model Type	MSIRV transmission model, age-structured	MSEIRV transmission model, sex & age-structured							
Inclusion criteria for IgG serological studies	Must have ≥4 age categories, with at least 2 <15yo and at least 2 ≥15yo	Must have ≥3 age categories, with at least 1 ≥15yo							
Force of infection (FOI), age stratum	320 age groups 1 month btw 0-20y, 1 year btw 21-100 y	2 age groups 0-13 years old, 13-100 years old							
Demography	Non-stable population allows changing birth and death rates per UN population projections	Stable population with fixed birth and death rates (but outputs scaled to UN population projections)							
Demographic transitions	Every rubella generation	Every year (Schenzle approach)							
Seasonality	Annual peak in transmission	No seasonality							
Vaccination timing	Every rubella generation	Every year							
Vaccine efficacy	Increases over 1st year of life to 97%	95% point estimate							
Vaccine dose correlation	RCV1 and RCV2 dependent, RI and SIA independent	Where possible: 50% of those vaccinated previously are vaccinated in SIAs; 100% of those who have received RCV1 receive RCV2							
Probability of CRS given infection in 1st 16 wks of pregnancy	0.65								
Infected introduction rate per 100,000 population annually	2.6 infected importations	5 infected importations							
How stochasticity is incorporated into the model	Randomly drawn R0 for each simulation Demographic and epidemiological transitions in each time step are random draws	Randomly drawn parameters for each simulation: Pre-vaccination force of infection, risk of a child being born with CRS following the mother's infection with rubella; vaccine efficacy Demographic and epidemiological transitions in each timestep are deterministic							

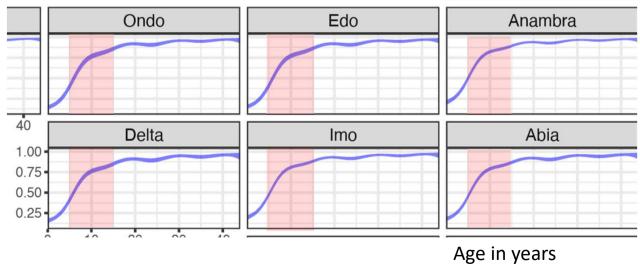

Assumed country-specific R0 values

Baseline age-specific proportion susceptible – UKHSA model


Baseline age-specific proportion susceptible – UGA model

Yobe

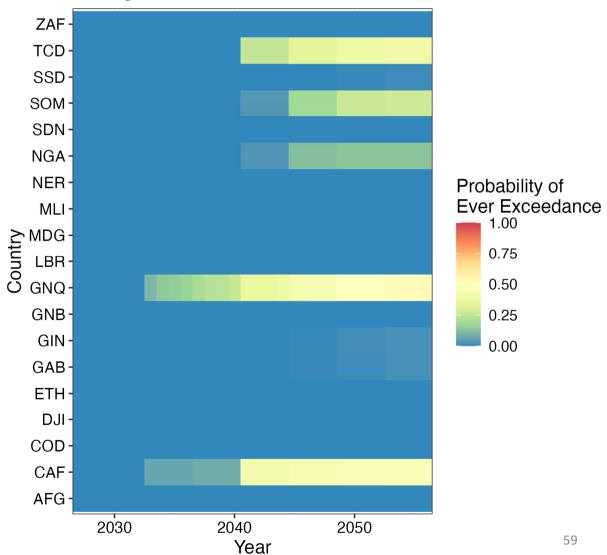

Borno


State Level Seroprevalence Nigeria

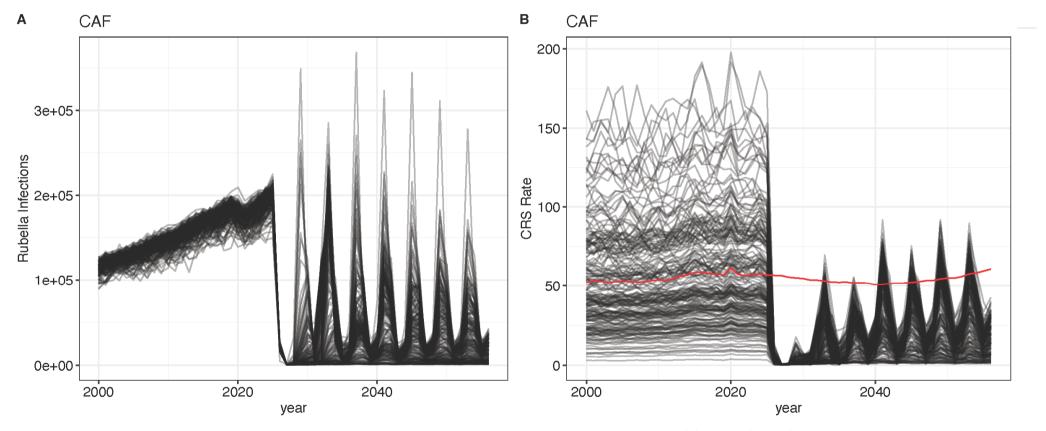
Sera collected from the 2018 Nigeria AIDS Indicator and Impact Survey (NAIIS)

- >3000 clusters
- 31,459 children under 15 y
- 9737 women 15-45y

Sera collected from the 2018 Nigeria AIDS Indicator and Impact Survey (NAIIS)

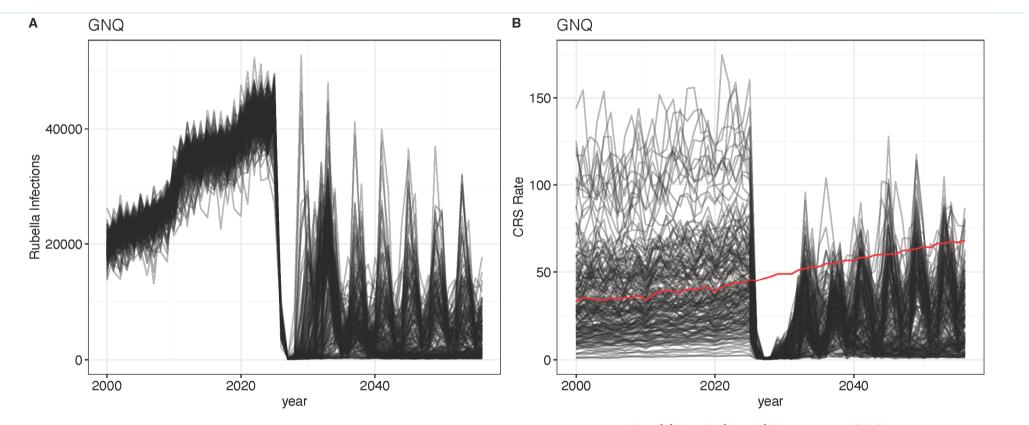

- >3000 clusters
- 31,459 children under 15 y
- 9737 women 15-45y

Incorporating Uncertainty


Proportion of 200 simulations per "RI + CU 60% + FU 60%" scenario in which yearly CRS rate ever exceeded yearly mean baseline CRS rate

per (more conservative) UGA model

Probability CRS via RI + CU 60% + FU 60% ever greater than mean CRS via Baseline

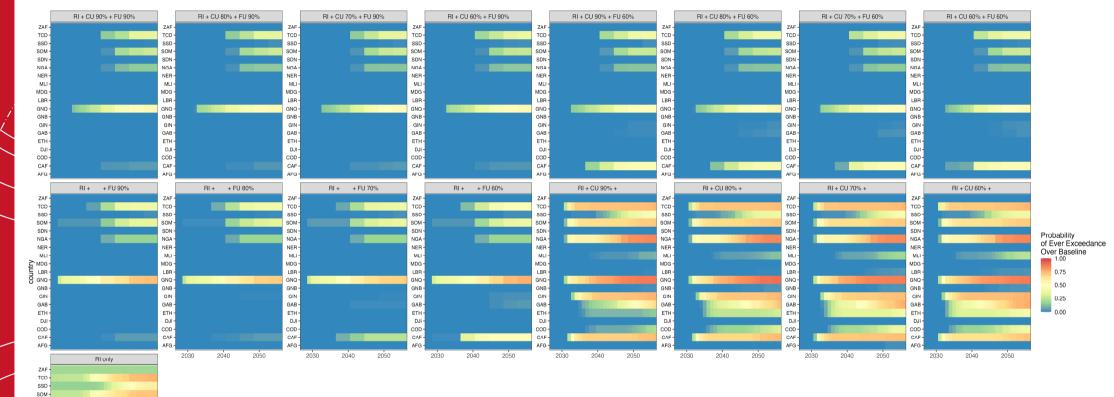


Deep Dive - "RI + CU 60% + FU 60%" scenario simulations for CAF

Red line is baseline mean CRS rate

Deep Dive - "RI + CU 60% + FU 60%" scenario simulations for GNQ

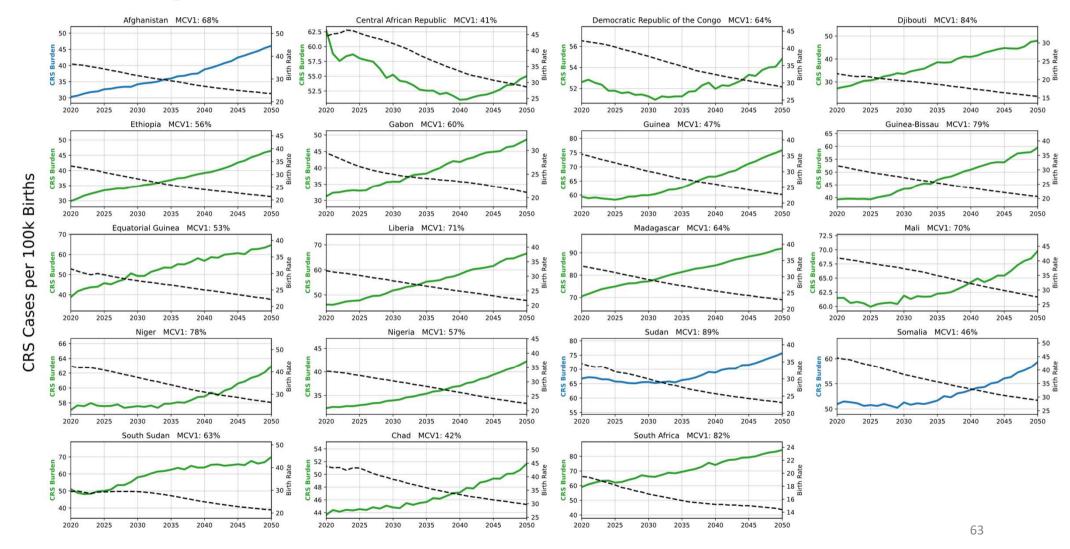
Red line is baseline mean CRS rate


Incorporating Uncertainty

SDN -NGA -

MLI -MDG -LBR -

GAB -


COD -

Proportion of 200 simulations for each scenario in which yearly CRS rate ever exceeded yearly baseline mean CRS rate

per (more conservative) UGA model

Contrasting CRS Burden and Birth Rate

Campaign definitions for Supplementary Immunization Activities (SIAs)

- "Follow-up" campaign refers to regular supplementary immunization activities designed
 to reach children born since the previous campaign to fill immunity gaps due to
 suboptimal routine immunization coverage. Usually for <5 years
- "Catch-up" campaign refers to a wide age-range campaign that is designed to ensure
 that older children who would otherwise not be vaccinated through the routine
 schedule have a chance to be immunized. For rubella vaccine introductions these are
 generally up to 15 years but can be wider if indicated.

Note that this is different from **individual** "catch up immunization" where children who are or were age-eligible for vaccination are given doses they missed.