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Total daily energy expenditure (“total expenditure”) reflects daily energy needs and is a critical variable
in human health and physiology, but its trajectory over the life course is poorly studied. We analyzed
a large, diverse database of total expenditure measured by the doubly labeled water method for males
and females aged 8 days to 95 years. Total expenditure increased with fat-free mass in a power-law
manner, with four distinct life stages. Fat-free mass–adjusted expenditure accelerates rapidly in
neonates to ~50% above adult values at ~1 year; declines slowly to adult levels by ~20 years; remains
stable in adulthood (20 to 60 years), even during pregnancy; then declines in older adults. These
changes shed light on human development and aging and should help shape nutrition and health
strategies across the life span.

A
ll of life’s essential tasks, from devel-
opment and reproduction to mainte-
nance and movement, require energy.
Total daily energy expenditure (total
expenditure; megajoules per day) is

thus central to understanding both daily
nutritional requirements and the body’s in-
vestment among activities. Yet, we know
surprisingly little about total expenditure
in humans or how it changes over the life
span. Most large (n > 1000 subjects) analy-
ses of human energy expenditure have been
limited to basal expenditure—the metabolic
rate at rest (1), which accounts for only a por-
tion (usually ~50 to 70%) of total expenditure—
or have estimated total expenditure frombasal
expenditure and daily physical activity (2–5).
Doubly labeled water studies provide mea-
surements of total expenditure in free-living
subjects but have been limited in sample size
(n < 600 subjects), geographic and socio-
economic diversity, and/or age (6–9).
Body composition, size, and physical ac-

tivity change over the life course, often in
concert, making it difficult to parse the de-
terminants of energy expenditure. Total and
basal expenditures increase with age as chil-
dren grow and mature (10, 11), but the rela-

tive effects of increasing physical activity and
age-related changes in tissue-specific meta-
bolic rates are unclear (12–16). Similarly, the
decline in total expenditure beginning in older
adults corresponds with declines in fat-free
mass and physical activity but may also reflect
age-related reductions in organ metabolism
(9, 17–19).
We investigated the effects of age, body com-

position, and sex on total expenditure using a
large (n = 6421 subjects; 64% female), diverse
(n = 29 countries) database of doubly labeled
water measurements for subjects aged 8 days
to 95 years (20), calculating total expenditure
from isotopic measurements by using a single,
validated equation for all subjects (21). Basal
expenditure, measured with indirect calorime-
try, was available for n = 2008 subjects, andwe
augmented the dataset with additional published
measures of basal expenditure in neonates and
doubly labeled water–mesaured total expenditure
in pregnant and postpartum women (supple-
mentary materials, materials and methods,
and table S1).
We found that both total and basal expend-

iture increased with fat-free mass in a power-
lawmanner (Fig. 1, figs. S1 and S2, and table S1),
requiring us to adjust for body size to isolate

potential effects of age, sex, and other factors.
Because of the power-law relationwith size, the
ratio of energy expenditure/mass does not ade-
quately control for body size because the ratio
trends lower for larger individuals (fig. S1).
Instead, we used regression analysis to control
for body size (22). We used a general linear
model with log-transformed values of energy
expenditure (total or basal), fat-free mass, and
fat mass in adults 20 to 60 years (table S2) to
calculate residual expenditures for each sub-
ject.We converted these residuals to “adjusted”
expenditures for clarity in discussing age-
related changes: 100% indicates an expendi-
ture that matches the expected value given
the subject’s fat-free mass and fat mass, 120%
indicates an expenditure 20% above expected,
and so on. Using this approach, we also cal-
culated the portion of adjusted total expenditure
attributed to basal expenditure (Fig. 2D and
materials andmethods). Segmented regression
analysis (materials andmethods) revealed four
distinct phases of adjusted total and basal
expenditure over the life span.
The first phase is of neonates, up to 1 year

of age. Neonates in the first month of life had
size-adjusted energy expenditures similar to
that of adults, with adjusted total expenditure
of 99.0 ± 17.2% (n = 35 subjects) and adjusted
basal expenditure of 78.1 ± 15.0%(n=34 subjects)
(Fig. 2). Both measures increased rapidly in
the first year. In segmented regression anal-
ysis, adjusted total expenditure rose 84.7 ±
7.2% per year from birth to a break point at
0.7 years of age [95% confidence interval (CI):
0.6, 0.8]; a similar rise and break point were
evident in adjusted basal expenditure (table
S4). For subjects between 9 and 15 months of
age, adjusted total and basal expenditures
were nearly ~50% elevated compared with
that of adults (Fig. 2).
The second phase is of juveniles, 1 to 20 years

of age. Total and basal expenditure continued to
increase with age throughout childhood and
adolescence along with fat-free mass (Fig. 1),
but size-adjusted expenditures steadily declined.
Adjusted total expenditure declined at a rate
of –2.8 ± 0.1% per year from 147.8 ± 22.6% for
subjects 1 to 2 years of age to 102.7 ± 18.1%
for subjects 20 to 25 years of age (tables S2
and S4). Segmented regression analysis iden-
tified a break point in adjusted total expendi-
ture at 20.5 years (95% CI: 19.8, 21.2), after
which it plateaued at adult levels (Fig. 2); a
similar decline and break point were evi-
dent in adjusted basal expenditure (Fig. 2
and table S4). No pubertal increases in ad-
justed total or basal expenditure were evident
among subjects 10 to 15 years of age (Fig. 2
and table S3). In multivariate regression for
subjects 1 to 20 years of age, males had a
higher total expenditure and adjusted total
expenditure (tables S2 and S3), but sex had
no detectable effect on the rate of decline in
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Fig. 1. Total energy expenditure (TEE) through the human life course. (A) TEE
increases with fat-free mass (FFM) in a power-law manner, but age groups
cluster about the trend line differently. The black line indicates TEE = 0.677FFM0.708.
Coefficient of determination (R2) = 0.83; P < 0.0001 (table S2). (B) Total
expenditure rises in childhood, is stable through adulthood, and declines in older

adults. Means ± SD for age-sex cohorts are shown. (C) Age-sex cohort means show
a distinct progression of total expenditure and fat-free mass over the life course.
(D) Neonates, juveniles, and adults exhibit distinct relationships between fat-free
mass and expenditure. The dashed line, extrapolated from the regression for
adults, approximates the regression used to calculate adjusted total expenditure.
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adjusted total expenditure with age (sex:age
interaction, P = 0.30).
The third phase is adulthood, from 20 to

60 years of age. Total and basal expendi-
ture and fat-free mass were all stable from
ages 20 to 60 years (Figs. 1 and 2 and tables
S1 and S2). Sex had no effect on total expen-
diture in multivariate models with fat-free
mass and fatmass, nor in analyses of adjusted
total expenditure (tables S2 and S4). Adjusted
total and basal expenditures were stable even
during pregnancy; the elevation in unadjusted
expenditures matched those expected from
the gain inmothers’ fat-freemass and fatmass
(Fig. 2C). Segmented regression analysis iden-
tified a break point at 63.0 years of age (95%CI:
60.1, 65.9), after which adjusted total expendi-
ture begins to decline. This break point was
somewhat earlier for adjusted basal expendi-
ture (46.5, 95% CI: 40.6, 52.4), but the rela-
tively small number of basal measures for 45
to 65 years of age (Fig. 2D) reduces our preci-
sion in determining this break point.

The fourth phase is of older adults, >60 years
of age. At ~60 years of age, total and basal ex-
penditure begin to decline, along with fat-free
mass and fat mass (Fig. 1, fig. S3, and table S1).
Declines in expenditure are not only a function
of reduced fat-free mass and fat mass, however.
Adjusted total expenditure declined by –0.7 ±
0.1%per year, and adjusted basal expendiure fell
at a similar rate (Fig. 2, fig. S3, supplementary
text S1, and table S4). For subjects 90+ years of
age, adjusted total expenditure was ~26% below
that of middle-aged adults.
Our analyses provide empirical measures

and predictive equations for total and basal
expenditure from infancy to old age (tables S1
and S2) and bring to light major metabolic
changes across the life course. To begin, we
can infer fetal metabolic rates from maternal
measures during pregnancy: If body size–
adjusted expenditures were elevated in the
fetus, then adjusted expenditures for pregnant
mothers—particularly late in pregnancy, when
the fetus accounts for a substantial portion of a

mother’s weight—would be likewise elevated.
Instead, the stability of adjusted total and basal
expenditures at ~100% during pregnancy
(Fig. 2B) indicates that the growing fetusmain-
tains a fat-free mass– and fat mass–adjusted
metabolic rate similar to that of adults, which
is consistent with adjusted expenditures of
neonates (both ~100%) (Fig. 2) in the first
weeks after birth. Total and basal expendi-
tures, both absolute and size-adjusted values,
then accelerate rapidly over the first year.
This early period of metabolic acceleration
corresponds to a critical period in early de-
velopment in which growth often falters in
nutritionally stressed populations (23). In-
creasing energy demands could be a con-
tributing factor.
After rapid acceleration in total and basal

expenditure during the first year, adjusted
expenditures progressively decline there-
after, reaching adult levels at ~20 years of
age. Elevated adjusted expenditures in this
life stage may reflect the metabolic demands
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Fig. 2. Fat-free mass– and fat mass–adjusted expenditures over the
life course. Individual subjects and age-sex cohort mean ± SD are
shown. For both (A) total expenditure (adjusted TEE) and (B) basal
expenditure (adjusted BEE), adjusted expenditures begin near adult
levels (~100%) but quickly climb to ~150% in the first year. Adjusted
expenditures decline to adult levels at ~20 years of age then decline again
in older adults. Basal expenditures for infants and children not in the

DLW Database are shown in gray. (C) Pregnant mothers exhibit adjusted
total and basal expenditures similar to those of nonreproducing adults
(Pre, before pregnancy; Post, 27 weeks postpartum). (D) Segmented
regression analysis of adjusted total (red) and adjusted basal expenditure
(black) (calculated as a portion of total, Adj. BEETEE) indicates a peak
at ~1 year of age, adult levels at ~20 years of age, and decline at
~60 years of age.

RESEARCH | REPORT
on A

ugust 12, 2021
 

http://science.sciencem
ag.org/

D
ow

nloaded from
 

http://science.sciencemag.org/


of growth and development. Adult expen-
ditures, adjusted for body size and compo-
sition, are remarkably stable, even during
pregnancy and postpartum. Declining meta-
bolic rates in older adults could increase the
risk of weight gain. However, neither fat mass
nor percentage increased in this period (fig.
S3), which is consistent with the hypothe-
sis that energy intake is coupled to expen-
diture (24).
Following previous studies (15, 16, 19, 25, 26),

we calculated the effect of organ size on ba-
sal expenditure over the life span (materials
and methods). Organs with a high tissue-
specific metabolic rate, particularly the brain
and liver, account for a greater proportion
of fat-free mass in young individuals. Thus,
organ-based basal expenditure, estimated
from organ size and tissue-specific metabolic
rate, follows a power-law relationship with
fat-free mass that is roughly consistent with
observed basal expenditures (materials and
methods, and fig. S6). Still, observed basal
expenditure exceeded organ-based estimates

by ~30% in early life (1 to 20 years of age)
and was ~20% lower than organ-based esti-
mates in subjects over 60 years of age (fig.
S6), which is consistent with studies indicat-
ing that tissue-specific metabolic rates are
elevated in juveniles (15, 16) and reduced in
older adults (19, 25, 26).
We investigated the contributions of daily

physical activity and changes in tissue-specific
metabolic rate to total and basal expenditure
using a simple model with two components:
activity and basal expenditure (Fig. 3 and ma-
terials andmethods). Activity expenditure was
modeled as a function of physical activity and
bodymass, assuming that activity costs are pro-
portional to weight, and could either remain
constant over the life span or follow the tra-
jectory of daily physical activity measured with
accelerometry, peaking at 5 to 10 years of age
and declining thereafter (Fig. 3) (12, 17, 18).
Similarly, basal expenditure was modeled as
a power function of fat-free mass (consistent
with organ-based basal expenditure estimates)
(materials andmethods)multiplied by a “tissue-

specific metabolism” term, which could either
remain constant at adult levels across the life
span or follow the trajectory observed in ad-
justed basal expenditure (Fig. 2). For each
scenario, total expenditure was modeled as
the sum of activity and basal expenditure
(materials and methods).
Models that hold physical activity or tissue-

specific metabolic rates constant over the life
span do not reproduce the observed patterns
of age-related change in absolute or adjusted
measures of total or basal expenditure (Fig. 3).
Only when age-related changes in physical ac-
tivity and tissue-specific metabolism are in-
cluded does model output match observed
expenditures, indicating that variation in
both physical activity and tissue-specific me-
tabolism contribute to total expenditure and
its components across the life span. Elevated
tissue-specific metabolism in early life may
be related to growth or development (15, 16).
Conversely, reduced expenditures in later life
may reflect a decline in organ-level metabo-
lism (25–27).
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Fig. 3. Modeling the contribu-
tion of physical activity and
tissue-specific metabolism to
daily expenditures. (A) Observed
total expenditure (TEE; red),
basal expenditure (BEE; black),
and activity expenditure (AEE;
gray) (table S1) show age-related
variation with respect to fat-free
mass (Fig. 1C) that is also evident
in adjusted values (Fig. 2D and
table S3). (B) These age effects
do not emerge in models that
assume constant physical activity
(PA; green) and tissue-specific
metabolic rate (TM; black) across
the life course. (C) When physical
activity and tissue-specific
metabolism follow the life course
trajectories evident from acceler-
ometry and adjusted basal
expenditure, respectively, model
output is similar to observed
expenditures.
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Metabolic models of life history common-
ly assume continuity in tissue-specific metab-
olism over the life course, with metabolic
rates increasing in a stable, power-lawmanner
(28, 29). Measures of humans here challenge
this view, with deviations from the power-
law relationships for total and basal expen-
diture in childhood and old age (Figs. 1 and 2).
These changes present a potential target
for investigating the kinetics of disease, drug
activity, and healing, processes that are in-
timately related to metabolic rate. Further,
interindividual variation in expenditure is
considerable even when controlling for fat-
free mass, fat mass, sex, and age (Figs. 1 and
2 and table S2). Elucidating the processes
underlying metabolic changes across the life
course and variation among individuals may
help reveal the roles of metabolic variation in
health and disease.
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