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Abstract 

 
Background: Guidelines for the initiation of antiretroviral treatment (ART) in developing 

countries have been revised to recommend ART initiation in all adults with CD4 counts of 

<350/μl, higher than the threshold of 200/μl that was previously recommended. However, 

there is uncertainty regarding the impact that this change in guideline will have on the 

numbers of adult patients starting ART. We aim to quantify the impact of this change using 

data from Masiphumelele, an informal settlement in Cape Town. 

Method: A mathematical model was developed to simulate demographic changes in the 

Masiphumelele community over time, age- and sex-specific HIV incidence rates, and CD4 

decline in untreated HIV-positive adults. Rates of ART initiation were estimated from 

numbers of patients starting ART in Masiphumelele, stratified by year of ART initiation, sex, 

baseline CD4 count and ART experience (patients restarting ART or transferring into the 

Masiphumelele ART programme from elsewhere were considered separately). 

Results: During the period 2005-6, when ART was available to all adults in Masiphumelele 

with CD4 counts below 350/μl, rates of ART initiation in males were substantially higher in 

those with CD4 <200 (74.3 per 100 ART-eligible person years (AEPY)) than in those with 

CD4 counts of 200-349 (8.8/100 AEPY). Over the same period, rates of ART initiation were 

substantially higher in women with CD4 counts <200 (103.6/100 AEPY) than in women with 

CD4 counts of 200-349 (22.5/100 AEPY). In the 2007-9 period, when ART initiation criteria 

reverted to those used nationally (CD4 <200 or WHO stage IV), the rate of ART initiation in 

adults with CD4 <200 increased, but the rate of ART initiation in adults with CD4 200-349 

declined. 

Conclusions: Although recent changes to ART initiation criteria imply a substantial increase 

in the numbers of adults who are ART-eligible, these results suggest that the actual increase 

in the number of adults starting ART is likely to be relatively modest. Improvements in 

access to HIV testing, as well as follow-up of HIV-diagnosed patients, will be needed in 

order to ensure greater ART initiation in the CD4 200-349 category. 
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 Background 
 

Many countries in sub-Saharan Africa continue to experience major challenges in rolling out 

antiretroviral treatment (ART) to the population that is eligible for treatment. Recent changes 

to ART guidelines have increased substantially the proportion of the HIV-positive population 

that is eligible to receive ART, with new guidelines recommending that ART be initiated in 

all adults who have CD4 counts below 350 cells/μl (World Health Organization 2009). At the 

same time, however, donor commitment to funding ART in developing countries has begun 

to level off. Realistic projections of the likely future growth in treatment numbers are needed 

in order for countries to plan for the financial and human resource requirements associated 

with the ART programme, particularly in the light of the new treatment guidelines. However, 

projection of the future uptake of ART is hampered by uncertainty regarding the likely rates 

of ART initiation in individuals who were previously considered ineligible, i.e. 

asymptomatically infected individuals with CD4 counts between 200 and 350. These 

individuals are less likely to know their HIV status than symptomatic individuals with CD4 

counts below 200, and they are therefore less likely to initiate ART. Projections of the future 

ART uptake are also hampered by uncertainty regarding rates at which individuals re-initiate 

ART after stopping therapy. This could potentially be very significant, considering the high 

rates of loss to follow-up that have been observed in many ART cohorts in developing 

countries (Fox and Rosen 2010). 

 

Data collected from the Masiphumelele community in South Africa provide a unique 

opportunity to address these uncertainties. During 2005 and 2006, this community was the 

focus of an intervention to start ART at higher CD4 counts than were recommended by the 

South African Department of Health at the time, at CD4 counts less than 350 (Sanne et al, 

2010). Following 2006, however, the intervention was discontinued, and the criteria for 

starting ART reverted to those used nationally, i.e. CD4 counts less than 200 or WHO clinical 

stage IV. The data from the ART programme in this community therefore provide valuable 

information on the relative numbers of patients starting ART at different CD4 counts, under 

the old and the new treatment guidelines. However, the interpretation of these relative 

numbers is complex because of the uncertainty regarding the population distribution of CD4 

counts in untreated individuals, which is likely to change substantially over time, both as a 

result of the natural evolution of the HIV epidemic, and as a result of the ART programme. In 

order to estimate the relative rates of ART initiation in the different untreated patient 

categories, it is necessary to use mathematical modelling to estimate the change over time in 

the numbers of untreated HIV-positive individuals in different categories. 

 

The aim of this paper is therefore to estimate the relative rates of ART initiation in different 

CD4 categories, as well as the relative rates of ART initiation in ART-naïve and previously 

treated individuals, using a mathematical model of the Masiphumelele community. To ensure 

that the denominators are estimated with a reasonable degree of accuracy, the model is 

calibrated to demographic data collected from the Masiphumelele community, as well as HIV 

prevalence data and data on CD4 distributions in untreated individuals. 
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Model description 

 

Demographic assumptions 

 

Regular household censuses have been conducted in the Masiphumelele community since 

1996, and this has provided information on the numbers of males and females in each five-

year age group in 1996, 2002, 2004, 2006, 2008 and 2010. Each of these censuses is assumed 

to provide information on the population size at the middle of the survey year. In the years in 

which censuses were not conducted, the numbers of males and females in each five-year age 

group are linearly interpolated. Prior to 1996, the population is linearly interpolated, from a 

level of zero in 1985 (at which time the Masiphumelele community did not exist) up to the 

level observed in the 1996 census. Although this assumption of linear growth is unrealistic, it 

has little effect on the HIV profile of the population in recent years, which is what we are 

primarily interested in. 

 

Having obtained estimates of numbers of males and females in each five year age group, we 

then estimated numbers of males and females at each individual age using Beer‟s “ordinary” 

formula (Judson and Popoff 2004). 

 

Of individuals aged x at the start of a particular year, who are of sex g and not receiving 

ART, a proportion mg(x) is assumed to migrate out of the Masiphumelele community during 

the year. These age-specific out-migration rates are based on estimates of the rate of 

migration from the Western Cape to the Eastern Cape among Africans, over the 2001-2007 

period (Dorrington and Moultrie 2009).  Most African migration in and out of the Western 

Cape is believed to be between the Eastern Cape and Western Cape provinces (Dorrington 

and Moultrie 2009), but to the extent that other provinces are excluded, and to the extent that 

intra-provincial out-migration is excluded, these estimates may understate the true rate of out-

migration in Masiphumelele. It might also be expected that rates of out-migration in urban 

informal settlements may be higher than in more settled rural communities. We therefore 

adjust the age-specific rates of out-migration estimated by Dorrington and Moultrie by a 

constant multiple of 12 in male and 18 in females, in order to obtain the mg(x) values. These 

multiples were chosen in order to produce estimates of in-migration consistent with the 

reported rates of in-migration in the Masiphumelele community in a 2010 household survey 

(discussed in more detail below). Due to the lack of migration data from other periods, it was 

assumed that rates of age-specific out-migration remained constant over the 1985-2010 

period. Rates of out-migration in individuals receiving ART are calculated from the numbers 

of ART patients who are known to have transferred to other ART services in each year. 

 

Similarly, numbers of patients known to have transferred into the Masiphumelele ART 

programme in each year are used to determine the model assumptions about numbers of in-

migrants who are known to be on ART at the time of entry into the population. To calculate 

the number on in-migrants at age x, who are not on ART, it is necessary to make use of the 

demographic balancing equation. Suppose that at time t, the number of individuals aged x in 

the population, of sex g and not on ART, is Ng(x, t). Suppose that in this group, the 

probability of either dying or starting ART in the next 12 months is dg(x, t). Then the number 

of individuals who are aged x + 1 a year later, Ng(x + 1, t + 1), can be computed using the 

formula 

 

    ),()(1),(1),()1,1( txIxmtxdtxNtxN ggggg  ,   (1) 
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where Ig(x, t) is the number of people migrating into the population, aged x at time t, who 

remained in the population until time t + 1. Since the values Ng(x, t) and Ng(x + 1, t + 1) are 

known (from the Beer‟s formula estimate of the total population, subtracting the model 

estimates of numbers of patients on ART), the terms of this equation can be rearranged to 

calculate the number of in-migrants. (The values of dg(x, t) are also calculated from the 

model, as described in subsequent sections.) From this it is apparent that the number of in-

migrants is positively related to the out-migration rate, and the assumed out-migration rates 

have been set in such a way that the resulting numbers of in-migrants are consistent with the 

in-migration rates in a 2010 household survey (Figure 1). Overall, the model estimate of the 

proportion of 15-49 year old females who have moved into Masiphumelele in the last three 

years (23.9%) is consistent with the 2010 survey estimate (26.1%, 95% CI: 22.5-30.0%), and 

similar consistency is observed in males aged 15-49 (27.9% in the model, compared with 

29.9% (95% CI: 26.1-34.0%) in the survey). However, in individuals aged 50 and older, the 

model estimates a significantly lower immigration rate than that measured in the survey, both 

in males and females. This suggests that the assumed rates of out-migration at the older ages 

may be too low, or that the rate of mortality in this older population may be under-estimated. 

In males aged 15-19, the model appears to significantly over-estimate the level of 

immigration observed in the survey. This implies that the assumed rates of out-migration at 

the younger ages may be too high in males. 

 

(a) F emale immigration in last 3 years
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Figure 1: Proportion of the 2010 Masiphumelele population that has migrated into 

Masiphumelele in the last three years, by age and sex 
Error bars surrounding survey estimates represent 95% confidence intervals. 

 

Non-AIDS mortality rates are assumed to be the same as those estimated for Africans in the 

Western Cape, as obtained from the ASSA2008 AIDS and Demographic model (Actuarial 

Society of South Africa 2011). These rates differ by sex and individual age, and they are also 

assumed to reduce slightly from one calendar year to the next. 

 

HIV incidence assumptions 

 

HIV incidence rates, by age and by sex, were obtained from a previously described model of 

sexual behaviour patterns and HIV transmission patterns in South Africa (Johnson et al, 

2009). These estimates are representative of the trends that would be expected at a national 

level. However, HIV incidence rates in Africans in the Western Cape appear to lag those in 

the country as a whole by approximately one year (Actuarial Society of South Africa 2011). 

We therefore applied a one-year offset to the national HIV incidence rates, when calculating 

the HIV incidence rates in Masiphumelele. The age- and sex-specific HIV incidence rates 
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were also adjusted by a constant factor of 1.35 in females, in order to bring the model 

estimates of HIV prevalence in Masiphumelele in line with the prevalence levels observed in 

surveys (Figure 2). These household surveys were conducted in 2005 (Wood et al, 2007) and 

in 2008, and are considered to provide a reasonably unbiased estimate of the actual 

prevalence in the population. No adjustment to male HIV incidence rates was necessary in 

order to achieve consistency between the model estimates of HIV prevalence in males and the 

survey estimates. 

 

(a) HIV  prevalence in men, 2005
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(b) HIV  prevalence in women, 2005
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(c) HIV  prevalence in men, 2008
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(d) HIV  prevalence in women, 2008
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Figure 2: Model calibration to age-specific HIV prevalence data 

 

In order to generate the HIV profile of immigrants into Masiphumelele, it is also necessary to 

make assumptions about HIV incidence rates in the population of potential immigrants into 

Masiphumelele. In reality, most immigrants into Masiphumelele are Africans from the 

Eastern Cape, and HIV incidence rates in this population group appear to peak at around the 

same time as HIV incidence rates in the general population (Actuarial Society of South 

Africa 2011), so that no time lag needs to be applied to the national HIV incidence rates. HIV 

prevalence in the population of potential immigrants is calculated for each age, sex and year, 

by applying the age- and year-specific HIV incidence rates to each single-year age cohort and 

assuming that infected individuals progress through a model of CD4 decline (described 

below) before dying from AIDS. This simple model does not allow for ART initiation, as the 

modelling of ART patients migrating into Masiphumelele is handled separately from the 

modelling of in-migrants who are not on ART. The HIV prevalence of female migrants into 

Masiphumelele is multiplied by a factor of 1.35, the same factor that is used to adjust HIV 

incidence rates after entry into the Masiphumelele community. 

 

Survival of untreated adults 

 

The survival of HIV-infected adults, in the absence of ART, is simulated using a multi-state 

model of HIV survival, represented in Figure 3. The parameters in this model are estimated 

from South African surveys of CD4 distributions in HIV-positive individuals, as described in 

the appendix. This diagram is a simplification of the model that is actually used, as 
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movements out of the population due to non-AIDS mortality are not shown. In addition, the 

age dependency of the transition rates is not shown. The parameters that are estimated in the 

appendix and shown in Figure 3 are assumed to apply to HIV-positive individuals who are 

aged 35, since this corresponds to the average age of individuals who become infected in 

their late twenties. For an individual aged x, the rate of transition out of state s is assumed to 

be 

 

 35015.1)(  x

ss x  , 

 

where 1.015 is the factor by which the rate of progression increases for each one-year 

increase in the individual age. The factor of 1.015 is the factor by which the average HIV 

survival time (in the absence of ART) increases for each one-year decrease in the age at 

which HIV acquisition occurs, and is estimated by fitting Weibull models to age-specific 

survival data from the CASCADE Collaboration (Collaborative Group on AIDS Incubation 

and HIV Survival 2000). Since the rate of mortality is inversely proportional to the average 

survival time, the factor by which the rates of progression increase, for each one-year 

increase in age, can be crudely approximated as being of a similar magnitude (1.015). 
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Figure 3: Multi-state model of decline in CD4 count in HIV-infected adults 

 

Rates of ART initiation 

 

Programme statistics, summarized in Table 1, provide information on the numbers of ART-

naive adults starting ART, by sex, by year and by CD4 category. In addition, information is 

available on numbers of patients re-initiating ART after having temporarily stopped ART 

(also included in Table 1). The high proportions of ART-naive patients starting ART with 

CD4 >200, in 2005 and 2006, are a reflection of the change in ART initiation criteria over 

this period. However, even after 2006, when treatment initiation criteria reverted to those 

used nationally, the proportion of new ART patients with CD4 >200 remained substantial.  
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Table 1: Profile of patients initiating ART in Masiphumelele 

 2004 2005 2006 2007 2008 2009 

Males starting ART       

   ART naive 35 64 88 77 81 83 

   Re-initiating ART 0 0 4 6 10 14 

   % of ART-naive with CD4 >200 7% 27% 23% 16% 26% 20% 

Females starting ART       

   ART naive 81 153 197 105 167 155 

   Re-initiating ART 0 1 4 10 24 11 

   % of ART-naive with CD4 >200 11% 38% 44% 32% 24% 31% 

 

In order to use these numbers as model inputs it is necessary to express them as rates of ART 

initiation (numbers of patients starting ART per 100 patient years of untreated ART 

eligibility). This rate is calculated for each year, for males and females separately, and for 

each of three eligible groups: ART-naive adults with CD4 <200, ART-naive adults with CD4 

200-350, and adults who have discontinued ART. However, the calculation of the 

denominator is complex because the number of patient years of untreated ART eligibility is 

affected by the numbers of patients starting ART (the numerator). Suppose that )(, tr cg  is the 

rate of ART initiation in adults of sex g, in eligibility group c (the three eligibility groups are 

defined above) in year t. Further suppose that )(, tS cg  is the corresponding number of adults 

starting ART (calculated from the information in Table 1). To calculate )(, tr cg  in terms of 

)(, tS cg , we need to know the model estimates of the numbers of individuals in eligibility 

category c at the start of year t, at each age x, ),(, txE cg , as well as the numbers progressing 

into eligibility category c over the course of year t, ),(, txP cg , and the rate of mortality that 

would be expected in the absence of ART in eligibility category c, )(, xq cg . Then if it is 

assumed that the individuals who progress to eligibility category c do so uniformly over the 

course of the year, it can be shown that 
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The rate of ART initiation, )(, tr cg , is then calculated using Newton‟s method. 

 

Survival after ART initiation 

 

Figure 4 shows how the model is extended to incorporate survival after ART initiation. 

Individuals on ART are categorized according to the number of years since they started ART 

and according to their CD4 count at the time they initiated ART. Individuals on ART are 

assumed to stop ART either as a result of death or discontinuation due to other reasons. After 

discontinuation of ART, individuals can restart treatment, but for the sake of simplicity this is 

assumed to occur only in individuals who have CD4 <200. 
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Figure 4: Multi-state model of survival after ART initiation 
For the sake of simplicity, transitions due to non-HIV mortality and migration into and out of the population 

(including ART patients transferring in and out) are not shown. 

 

Based on recorded numbers of deaths in the Masiphumelele ART programme, it is assumed 

that the annual AIDS mortality rate in patients starting ART with CD4 <200 is 6.6 per 100 

person years during the first 6 months after ART initiation, 2 per 100 person years during 

months 7-18, and 1 per 100 person years thereafter. Mortality rates are assumed to be lower 

in those patients who start ART with CD4 counts of 200-349: 2 per 100 person years during 

the first 6 months, 0.8 per 100 person years during months 7-18, and 0.6 per 100 person years 

thereafter. This means that during the first 6 months after starting ART, the rate of mortality 

in patients with baseline CD4 ≥200 is assumed to be 0.3 times the mortality rate in patients 

with CD4 <200. This ratio is consistent with the ratio of 0.34 observed in a pooled analysis of 
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data from ART programmes across South Africa, comparing the same CD4 categories during 

the first 4 months after starting ART (Cornell et al, 2010). The above mortality rates are 

assumed to apply at age 35, the average age at which adults start ART in the South African 

context (Cornell et al, 2010). There are few studies in developing countries that have 

distinguished HIV mortality and non-HIV mortality after ART initiation, but studies that 

have done so in industrialized settings have shown a strong association between older age and 

higher HIV mortality (van Sighem et al, 2003; Braithwaite et al, 2005). Based on data from 

the ATHENA cohort, the HIV-related mortality rate is assumed to increase by a factor of 

1.029 for each year of increase in age (van Sighem et al, 2003). For example, in adults who 

started ART with CD4 <200 and who have survived for more than 18 months on ART, the 

annual HIV mortality rate at age x is assumed to be 0.01 × 1.029 
x – 35

. 

 

Assumed rates of ART discontinuation (for reasons other than death) are also based on 

Masiphumelele estimates of numbers of patients lost to follow-up. Consistent with data from 

other South African cohorts (Nglazi et al, 2011; Fatti et al, 2010; Boulle et al, 2010; Cornell 

et al, 2010), loss to follow-up in Masiphumelele has become increasingly common in recent 

years, particularly during the first year after ART is initiated. During the first 6 months after 

starting ART, the annual rate of stopping ART is assumed to increase from 10.3 per 100 

person years in 2004, to 13.7 per 100 person years in 2005-6, to 29.2 per 100 person years in 

2007-8, to 40.3 per 100 person years thereafter. The annual rate of stopping ART after the 

first 6 months on ART is assumed to be 6 per 100 per person years, and this is assumed to 

remain constant over time. As with the mortality rates, these rates of stopping ART are 

assumed to apply at age 35, and age adjustment factors are applied to allow for the fact that 

ART discontinuation tends to be much more common at younger ages than at older ages 

(Cornell et al, 2010; Fatti et al, 2010). Based on South African data sources (Cornell et al, 

2010; Fatti et al, 2010), the rate of stopping ART is assumed to be reduced by a factor of 

0.989 for each one-year increase in the age of the patient on ART. South African studies have 

also shown that even after adjusting for age, rates of loss to follow-up are significantly higher 

in men than in women (Nglazi et al, 2011; Fatti et al, 2010). It is therefore assumed that rates 

of stopping ART are multiplied by a factor of 1.15 in males and 0.92 in females, so that the 

male:female ratio is consistent with the adjusted hazard ratio of 1.26 (95% CI: 1.05-1.51) 

estimated by Nglazi et al (2011). For example, in a woman of age x who has been on ART 

for at least 6 months, the rate of ART discontinuation is calculated as 0.06 × 0.92 × 0.989 
x – 

35
. 

 

For the purpose of calibrating the model to CD4 data, and for the purpose of determining the 

CD4 groups into which individuals move after stopping ART, it is necessary to make 

assumptions about changes in CD4 counts after ART initiation. These assumptions about 

changes in CD4 counts are based on published estimates of CD4 trajectories in different 

settings (Boulle et al, 2010; Lok et al, 2010; Nash et al, 2008). Boulle et al (2010) have 

reported medians and interquartile ranges of CD4 counts in patients on ART for different 

durations, in a South African ART programme in which almost all patients started ART with 

CD4 <200. Gamma distributions have been fitted to these data to determine (approximately) 

the mean CD4 and coefficient of variation in CD4 counts at each duration after ART 

initiation, in patients who start ART with CD4 <200. In patients who start ART at higher 

CD4 counts, the change in mean CD4 count is approximated from a collaborative analysis of 

CD4 changes in resource-limited settings (Nash et al, 2008). However, the latter analysis 

suggests a less substantial long-term increase in CD4 counts than that observed by Boulle et 

al, when the comparison is restricted to patients with baseline CD4 <200. This may be 
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because virological monitoring (which is not routine in most resource-limited settings) is 

having a pronounced effect on CD4 recovery in South African settings. The mean CD4 

trajectories estimated by Nash et al, in patients starting ART with CD4 >200, have therefore 

been adjusted upwards to produce a trend more consistent with CD4 patterns observed in 

South Africa. The coefficients of variation in CD4 counts in patients starting ART at CD4 

counts >200 have been estimated from fitting gamma distributions to CD4 data from US 

patients starting ART at higher CD4 counts (Lok et al, 2010). Based on these mean CD4 

counts and assumed coefficients of variation, it is possible to calculate the proportions of 

patients in different CD4 categories, by assuming that CD4 counts are gamma-distributed. 

The resulting CD4 distributions are shown in Table 2. CD4 distributions are assumed to 

remain stable after 54 months on ART. 

 

Table 2: Proportions of ART patients in different CD4 categories 

 Months since ART initiation 

(with baseline CD4 <200) 

Months since ART initiation 

(with baseline CD4 200-349) 

 6 18 30 42 54+ 6 18 30 42 54+ 

CD4 <200 0.568 0.184 0.114 0.079 0.059 0.002 0.001 0.002 0.002 0.001 

CD4 200-349 0.367 0.402 0.327 0.268 0.225 0.447 0.100 0.079 0.054 0.028 

CD4 350-500 0.060 0.266 0.295 0.292 0.279 0.526 0.450 0.292 0.200 0.132 

CD4 >500 0.006 0.148 0.264 0.360 0.437 0.026 0.449 0.627 0.744 0.839 

 

Studies have shown that after treatment interruptions, there are typically very rapid declines 

in CD4 count during the first three months after treatment is discontinued (in excess of the 

rate of CD4 decline that would normally be expected in untreated patients), followed by 

slower rates of CD4 decline thereafter (El-Sadr et al, 2006; Sungkanuparph et al, 2007; 

Touloumi et al, 2006). To model this, it is assumed that there is an instantaneous change in 

CD4 at the point of ART discontinuation, after which patients experience the same rate of 

CD4 decline as untreated ART-naive adults of the same age and CD4 count. The percentage 

reduction in CD4 count after ART interruption has been shown to be strongly negatively 

associated with both the baseline CD4 count at the time of ART initiation and the CD4 count 

at the time of ART interruption (Touloumi et al, 2006). Suppose that Fc,s(l) represents the 

probability that an individual who was in baseline CD4 category c, with a CD4 count in 

category s just prior to stopping ART, experiences a proportionate drop in CD4 count of < l, 

after stopping ART (this implies that Fc,s(0) = 0 and Fc,s(1) = 1, assuming that the CD4 count 

cannot increase after ART interruption). Further suppose that individuals in CD4 category s 

have CD4 counts uniformly distributed between lower limit a and upper limit b prior to ART 

interruption. Then the probability that their CD4 count will drop below limit l is 
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This formula can be easily evaluated if it is assumed that F is a cumulative beta distribution. 

The means of the corresponding beta probability density functions, Mc,s, are estimated from 

the average percentage reductions in CD4 counts estimated by Touloumi et al (2006). The 

standard deviations of the beta probability densities, σc,s, are calculated according to the 

formula 



12 

 

 

 
  5.0if

5.0if

12.0

2.0

,

,

,

,

,













sc

sc

sc

sc

sc
M

M

M

M
  

 

where the multiple of 0.2 has been chosen in order to produce a range of CD4 reductions 

consistent with that reported by Sungkanuparph et al (2007). The assumed beta parameters 

are then used to determine the proportions of individuals falling into different CD4 categories 

after stopping ART, and these proportions are shown in Table 3. 

 

Table 3: Changes in CD4 counts after ART interruptions 

 Started ART with CD4 <200 Started ART with CD4 200-349 

 CD4 just prior to stopping ART CD4 just prior to stopping ART 

 >500 350-500 200-349 <200 >500 350-500 200-349 <200 

Mean proportionate  

   CD4 reduction (Mc,s) 0.6 0.6 0.65 0.75 0.45 0.45 0.55 0.65 

Proportion in CD4 group 

   after stopping ART 

        

      CD4 <200 0.20 0.78 1.00 1.00 0.01 0.26 0.98 1.00 

      CD4 200-349 0.70 0.22 0.00 0.00 0.47 0.73 0.02 0.00 

      CD4 350-500 0.10 0.00 0.00 0.00 0.46 0.01 0.00 0.00 

      CD4 >500 0.00 0.00 0.00 0.00 0.05 0.00 0.00 0.00 

 

The proportion of individuals on ART who move into a particular CD4 category after 

stopping ART is thus calculated by multiplying the appropriate column vector in Table 2 by 

the appropriate row vector in Table 3. For example, if an individual who started ART with a 

CD4 count of <200 stops ART after 30 months, the probability that their CD4 count is <200 

after stopping ART is calculated as 

 

 0.114 × 1.00 + 0.327 × 1.00 + 0.295 × 0.78 + 0.264 × 0.20 = 0.72. 

 

Results 

 

Model calibration and validation 

 

Figure 5 compares the modelled CD4 distribution in the Masiphumelele population, in the 

middle of 2010, with the CD4 distribution that was observed in a survey of CD4 counts in 

HIV-positive individuals in the Masiphumelele community. There is reasonable consistency 

between the model and the survey, although the model appears to estimate slightly too low a 

proportion of untreated HIV-positive adults in the CD4 <200 category. 
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Figure 5: Comparison of observed and modelled CD4 distributions in HIV-positive adults  
Error bars around survey estimates represent 95% confidence intervals. 

 

CD4 data collected from the ART programme can also be used to validate the model 

assumptions about changes in CD4 distributions after ART initiation. For each patient in care 

at the end of each calendar year, an average CD4 count has been calculated by averaging 

across all CD4 measurements between the previous April and the following February. This 

means that the average date to which the CD4 measurements relate is mid-September, which 

differs from the date of the model estimates of the CD4 distributions (mid-year). 

Nevertheless, there is a reasonable degree of correspondence between the model estimates of 

CD4 distributions in treated adults and the actual CD4 distributions, when plotted on 

comparable time scales (Figure 6). However, the model does slightly over-estimate the 

proportions of treated adults with CD4 counts of 350-500 (Figure 6c). There is a clear 

improvement in CD4 distributions over time as the average duration on ART increases. 
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Figure 6: Comparison of observed and modelled CD4 distributions in adults receiving ART 

 

The model estimates of the numbers of patients leaving care due to either transfer or loss to 

follow-up can also be compared with Masiphumelele programme statistics. However, since 

the model projects the change in population from mid-year to mid-year, it is necessary to 

convert the programme statistics (estimated by calendar year) into statistics that run from 

mid-year to mid-year. This is done by assuming, for example, that the numbers of transfers 

between mid-2005 and mid-2006 is half of the number in the 2005 calendar year and half of 

the number in the 2006 calendar year. After making this adjustment to the programme data, 

the programme data appear to be reasonably consistent with the model estimates, both in 

males and in females (Figure 7). No comparison with recorded numbers of deaths is shown, 

as the numbers of deaths in each year is very small, and there is thus substantial random 

variation. 
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Figure 7: Comparison of modelled and recorded numbers of exits from the ART programme 

 

As a final check on the reasonability of the demographic assumptions, we compare the model 

estimates of the size of the Masiphumelele population, aged 15 and older, with the data 

collected in the periodic censuses of the community (Figure 8). Although a high level of 

consistency would be expected (since the censuses have been used to determine the 

population growth assumptions and the demographic balancing equation has been used), 

complete consistency is not achieved because the model does not allow for negative numbers 

of in-migrants (which can be implied by equation 1 if the assumed rates of out-migration or 

mortality are too low). At a few ages this has led to population growth rates greater than those 

observed. 
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Figure 8: Growth in population aged 15 and older over time 

 

Rates of ART initiation 

 

Figure 9 compares two measures of ART access in the Masiphumelele community, described 

in detail elsewhere (Johnson and Boulle 2011). ART coverage in the community, defined as 

the proportion of people on ART or eligible for ART (CD4 <350) who are currently receiving 

ART, has increased rapidly over the 2004-6 period, but growth has subsequently slowed. By 

the middle of 2010, ART coverage was 44% in males and 55% in females. If ART access is 

instead measured in terms of the numbers of patients starting ART for the first time in a 

particular year, divided by the number of people becoming eligible for ART in the same year, 

this enrolment ratio reaches its highest level in 2005 and 2006. The ratio has since stabilized 

at around 1 in females (indicating that universal access in females will be achieved if 
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enrolment continues at its current rate) and at around 0.75 in men (indicating that if 

enrolment continues at its current rate, a quarter of HIV-positive men will never receive 

ART). 
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Figure 9: Trends in adult ART access in Masiphumelele 
Treatment eligibility is defined in terms of the 2010 WHO ART guidelines. 

 

Another way in which to measure ART access is by calculating rates of ART initiation per 

100 person years of untreated ART eligibility. This measure is shown in Table 4. In both 

males and females who are ART-naive and have CD4 <200, rates of ART initiation have 

increased steadily over the 2004-2009 period. Male ART initiation rates have stabilized since 

2006, while female ART initiation rates have risen to implausibly high levels in 2008 and 

2009 – possibly suggesting that the denominator (numbers of untreated women with CD4 

<200) may be underestimated by the model. During the period when the old ART initiation 

criteria were in place (2004 and 2007-2009) rates of ART initiation in the CD4 200-349 

category were only about 6% of those in the CD4 <200 category. Most of these individuals 

would have started ART because of their clinical symptoms. During the period when the CD4 

threshold for ART initiation was changed to 350 (2005 and 2006), the ART initiation rate in 

the CD4 200-349 category was somewhat higher in men (12% of the rate in men with CD4 

<200) and substantially higher in women (22% of the rate in women with CD4 <200). Rates 

of re-initiating ART after interrupting therapy were generally lower than the rates of starting 

ART for the first time in patients with CD4 <200. 

 

Table 4: Rates of ART initiation (number of patients starting ART per 100 person years of 

ART eligibility) 
 2004 2005 2006 2007 2008 2009 2005-6 2007-9 2004-9 

Males          

   ART-naive, CD4 <200 36.5 56.1 96.0 102.1 94.5 107.5 74.3 101.3 78.3 

   ART-naive, CD4 200-349 1.2 8.4 9.3 4.9 7.9 5.8 8.8 6.2 6.4 

   Discontinued ART 0.0 20.2 36.7 51.7 82.1 27.8   32.2 

Females          

   ART-naive, CD4 <200 51.9 82.2 133.5 117.1 271.7 303.1 103.6 213.3 121.4 

   ART-naive, CD4 200-349 2.8 18.0 27.2 10.1 11.4 13.1 22.5 11.6 13.8 

   Discontinued ART 67.0 20.0 31.3 40.1 46.6 10.8   24.9 

  

 

As a result of these high levels of ART initiation, substantial reductions in AIDS mortality 

have occurred. The model estimate of the trend in adult AIDS mortality is shown in Figure 
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10a, and is compared with the trend that would have been expected if there had been no 

provision of ART in Masiphumelele. Between mid-2008 and mid-2009, the AIDS mortality 

rate in the Masiphumelele community was 6.7 per 1000, 53% lower than the rate of 14.0 per 

1000 that would have been expected in the absence of ART. Most of the AIDS deaths 

occurring in Masiphumelele are still occurring in individuals who have never accessed ART, 

although an increasingly high proportion of AIDS deaths are occurring in patients who have 

stopped ART (Figure 10b). 
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Figure 10: Trends in adult AIDS death rates, per 1000 population aged 15+  

 

 

Discussion 

 

The ART initiation rates in Table 4 show that even when ART eligibility criteria are 

expanded to include all individuals with CD4 counts below 350, the rates of ART initiation in 

the CD4 200-349 category remain substantially lower than the rates of ART initiation in the 

CD4 <200 category. This difference is particularly substantial in males, possibly because 

HIV-positive men are less likely to have been tested and to know their HIV status than HIV-

positive women, who would typically be diagnosed through antenatal HIV screening. The 

extent of the difference in ART initiation rates between the 200-349 and <200 CD4 

categories is likely to be highly dependent on the proportion of HIV-positive individuals who 

know their HIV status and who are receiving regular monitoring. Models that are used to 

project future rates of ART uptake will need to take into account the lower rates of ART 

initiation at higher CD4 counts, and should ideally allow for rates of ART initiation at higher 

CD4 counts to depend on proportions of people who have received HIV testing. 

 

Rates of restarting ART after treatment interruption are generally lower than rates of ART 

initiation observed in patients who are ART-naive with CD4 counts below 200. The overall 

rate of ART re-initiation in females who have stopped ART is 24.9 per 100 person-years, 

similar to the rate of 24.1 estimated by Kranzer et al (2010), using data from the same 

community. However, our estimated rate of ART resumption in males, 32.2 per 100 person 

years, is substantially higher than that estimated by Kranzer et al (17.6). This may be because 

of differences in the method used to calculate the denominator in the rate calculation: our 
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method excludes follow-up in patients after they have left the Masiphumelele population, due 

to migration and death (both of which occur at substantially higher rates in men who have 

discontinued ART than in women who have discontinued ART). 

 

Model limitations 

 

The most significant limitation of the current analysis is that it does not include any 

consideration of sensitivity of the model to changes in key parameters. A more thorough 

uncertainty analysis is required in order to assess the ranges of uncertainty around the model 

outputs. Key sources of uncertainty to consider will include rates of CD4 change in untreated 

adults, rates of ART interruption in treated individuals, adjustments to HIV incidence rates 

from national population models, and assumptions about out-migration.  

 

Another problem is that although the model estimates of total numbers of adults on ART are 

in reasonable agreement with the recorded numbers of adults on ART, the modelled age 

distribution of patients on ART is quite different from the actual age distribution. In 

particular, the model over-estimates the numbers of 25-34 year olds on ART and under-

estimates the numbers of ART patients aged 45 and older, both in males and in females 

(results not shown). One possible explanation for this discrepancy is that the model does not 

allow for age differences in the rate of ART resumption after interruption of therapy. If rates 

of resumption are significantly higher at older ages than at younger ages, as suggested by data 

from the Masiphumelele community (Kranzer et al, 2010), the numbers on ART in the 25-34 

age group would be expected to be lower than those modelled, and the number in the 45+ age 

group would be expected to be higher than those modelled. Alternatively, there may be other 

age-specific factors affecting knowledge of HIV status and socioeconomic status, which in 

turn influence rates of access to ART at different ages. Since the model in its current form 

does not provide a good fit to age-specific ART data, caution should be applied in the use of 

age-specific outputs from the model, particularly in the case of outputs relating to ART. 

 

A limitation of the method used to estimate mortality after ART initiation is that this is based 

only on deaths recorded in patients‟ clinical records. This is likely to be an under-estimate of 

the true numbers of deaths that have occurred. Tracing studies conducted in South Africa 

(Maskew et al, 2007; Dalal et al, 2008) and studies that have linked patients with known ID 

numbers to the national population register (Fairall et al, 2008; Van Cutsem et al, 2011; Fox 

et al, 2010) have demonstrated that a substantial proportion of patients who are classified as 

“lost to follow-up” are actually dead, with death often occurring at the same time that the 

patient was lost to the system. Our model may therefore understate the number of HIV deaths 

that occur while patients are on ART. 

 

The model could also be improved if ART programme statistics were reported over periods 

from mid-year to mid-year, to be consistent with the way in which the model projects the 

Masiphumelele population. Although we have approximated the numbers over mid-year to 

mid-year from the statistics reported in each calendar year, there is some loss of accuracy as a 

result of the associated assumption that events occur uniformly over each calendar year. 
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Appendix: Estimation of parameters for a four-stage model of CD4 decline 

 

In order to estimate the rates at which individuals become eligible for antiretroviral treatment, 

it is necessary to estimate the rates of CD4 decline in HIV-infected individuals in the absence 

of antiretroviral treatment. Figure 3 in the main text shows one possible model that we might 

wish to fit to South African CD4 data. Note that in this simple model we are ignoring non-

AIDS mortality and we are also not allowing for initiation of antiretroviral treatment. 

Suppose that parameter  can be estimated from an independent source. For example, a study 

of mortality rates in HIV-infected individuals without access to antiretroviral treatment in 

Cape Town (Badri et al, 2006), suggests that the ratio of the mortality rate in the CD4 200-

349 category to that in the CD4 <200 category is 0.30. Also suppose that we have determined 

the mean HIV survival time, in the absence of antiretroviral treatment, from an independent 

source. The mean, μ, is equal to  
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Based on an analysis of South African reported death data (Johnson et al, 2007) and more 

recent data on the survival of untreated HIV-infected adults (Glynn et al, 2007; Eligibility for 

ART in lower income countries collaboration 2008), we assume a mean survival time of 12 

years. Our objective is to estimate the parameters 2, 3 and 4. Once these parameters have 

been estimated, the parameter 1 can be obtained using the equation 
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We aim to estimate these parameters by fitting our model to data from three different South 

African studies that attempted to determine the proportions of HIV-infected adults in 

different CD4 categories. The results of these three studies are summarized in Table A1. All 

three studies were conducted when access to antiretroviral treatment in South Africa was 

fairly limited, and the proportions can therefore be assumed to be representative of untreated 

individuals. 

 

Table A1: Empirical estimates of proportions of HIV-infected adults in different CD4 stages 

Study 

Year 

of 

survey 

Population 

sampled 

# 

HIV+ 

adults 

% with CD4 of 

>500 350- 

500 

200- 

349 

<200 

Auvert et al (2004) 2002 Households in  

Orange Farm 

196 46.0 25.6 18.9 9.5 

Rehle and Shisana  

(2005) 

2004 Teachers 444 27.9 19.8 30.0 22.3 

Connelly et al (2007) 2005 Health workers 74 35.1 17.6 28.4 18.9 

 

To fit the model to the cross-sectional CD4 data, it is necessary to make assumptions about 

the annual numbers of new HIV infections in South African adults, in each year since the 

start of the South African HIV/AIDS epidemic – these are obtained from the ASSA2003 

AIDS and Demographic Model (Dorrington et al, 2006). The model shown in Figure 3 is 

used to project the change in the number of HIV-infected adults in each CD4 category at the 
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middle of each year, taking as entrants to the CD4 >500 stage the number of new HIV 

infections. (It is reasonable to assume that all adults have CD4+ counts above 500 at the time 

of acquiring HIV, as South African CD4 data (Williams et al, 2006; Coutsoudis et al, 2010) 

suggest that the proportion of HIV-negative adults with CD4 <500 is less than 3%.) The 

model is then fitted to the data shown in Table A1 using maximum likelihood (the method 

used to define the likelihood is explained at the end of the appendix). The resulting maximum 

likelihood estimates are summarized in Table A2, and the maximum likelihood fit to the CD4 

data is shown in Figure A1. 

 

Table A2: Maximum likelihood estimates of model parameters 

Stage s Definition 
Maximum likelihood estimate 

s 1/s 

1 CD4 >500 0.306 3.27 

2 CD4 350-500 0.490 2.04 

3 CD4 200-349 0.248 4.04 

4 CD4 <200 0.224 4.47 
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Figure A1: Maximum likelihood fit to cross-sectional CD4 data 
Dots represent results from surveys, and error bars represent 95% confidence intervals around these estimates. 

Solid black line represents model estimate when the maximum likelihood parameters (Table A2) are entered 

into the model. 

 

Three independent checks on the validity of the maximum likelihood estimates were 

performed. Firstly, the model estimates of the proportions of infected adults surviving at each 

integer duration following HIV acquisition were compared with estimated rates of survival 

from a cohort of South African gold miners who did not have access to antiretroviral 

treatment (Glynn et al, 2007). (The effect of non-AIDS mortality was removed, so the 

survival rates effectively represent the survival that would be expected in the absence of non-
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AIDS mortality). As Figure A2 shows, the model estimates are reasonably consistent with the 

estimates from the cohort of gold miners. 
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Figure A2: Comparison of model estimates and empirical estimates of proportions of HIV-

infected adults surviving, in the absence of antiretroviral treatment 

 

The second independent check was to compare the model estimates of the proportion of HIV-

positive adults in each CD4 category in 2004 with corresponding estimates of another model 

of CD4 decline that has been applied to South Africa (Adam and Johnson 2009). The latter 

model estimates proportions in the CD4 >500 and CD4 350-500 categories of 36.7% and 

24.6% respectively, which are roughly consistent with our model estimates (33.7% and 

21.3% respectively). In the CD4 <350 category, the model estimates are not directly 

comparable because the latter model has an „AIDS‟ stage that is not defined in terms of CD4 

count, and a small proportion of individuals in this stage would have CD4 counts above 200. 

As a result, the estimated proportion of individuals who have CD4 counts of 200-349 and 

have not progressed to AIDS (19.9%) is lower than our model estimate of the proportion of 

infected adults with CD4 counts of 200-349 (26.7%). The estimated proportion of adults with 

AIDS or a CD4 count <200 (18.8%) is consistent with our model estimate of the proportion 

of adults with a CD4 count <200 (18.3%).  

 

The third check was to compare the estimated mortality rate in untreated patients with CD4 

count <200 with that estimated empirically, in patients from Cape Town without access to 

ART (Badri et al, 2006) and in pregnant women in KwaZulu-Natal without access to ART 

(Coutsoudis et al, 2010). The model estimate (0.224 in Table A2) is somewhat lower than the 

estimate of 0.27 from the Cape Town data. It is important to note that in the Cape Town 

cohort, individuals were not tracked from seroconversion, but from the date at which they 

first were diagnosed HIV-positive, and we would therefore expect some bias towards sicker 

individuals with a higher mortality rate. This might explain why our model estimate is lower 

than the observed mortality rate. The model estimate of 0.224 is higher than the mortality rate 

of 0.171 observed in pregnant women in KZN, but this is probably because the CD4 counts in 

these women were reduced by haemodilution during pregnancy (i.e. the women appear to be 

at a more advanced stage of disease than is actually the case). 
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Method to derive likelihood function 

 

Suppose that our model estimates that the proportions of individuals in stage i of HIV 

infection, in year tj, is )( ji t (i = 1, 2, 3, 4). Further suppose that the observed numbers of 

infected individuals in the j
th

 study, conducted in year tj, who are in stage i is nij. It could then 

be assumed that the nij terms are multinomially distributed, so that the likelihood function in 

respect of the j
th

 study is equal to 
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where nj is the total number of HIV-positive adults in the  j
th

 study. This is a fixed effects 

model, i.e. it is assumed that the CD4 distribution is the same for all South African 

populations that we might choose to sample. The assumption of a fixed effects framework is 

probably unrealistic, since some populations may have better access to healthcare, some may 

have better nutrition, some populations may be experiencing more advanced epidemics than 

others, etc. To account for variation in proportions between sub-populations, define ij as the 

true proportion of infected individuals in stage i, in the j
th

 sub-population. Then it would be 

natural to assume that the ij terms are Dirichlet-distributed, i.e. 
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where jρ  and )( jtπ  represent the vectors of ij and )( ji t  values respectively. Note that 

from the properties of the Dirichlet distribution, 
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so that the   variable controls the variance of the random effects. The likelihood function is 

then 
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where jn  represents the vector of nij values. The likelihood in equation (A3) can be more 

fully expressed as 
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Note that after factoring out the terms that are independent of ij in the above equation, the 

integral is itself of a Dirichlet form, and therefore integrates to 1 with the multiplication of an 

appropriate constant term. Hence 
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The total likelihood is obtained by multiplying the values of the likelihood for each individual 

study (equation A4). We maximize the natural log of this likelihood with respect to , 2, 3 

and 4 (since the i terms determine the )( ji t  estimates), and hence the factorial term can 

be omitted from equation (4). The expression we attempt to maximize is thus 
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The maximum likelihood estimate of  (not shown in Table A2) is 188.5. 


