Correlates of Immunity in Vaccinology

Benjamin Kagina bm.kagina@uct.ac.za

11th Nov 2014

Correlates of Immunity in Vaccinology

- 1) Vaccine development
- 2) Vaccine evaluation

Vaccine evaluation

Pre-licensing (phase I-III)

Vaccine efficacy:

-% reduction in disease incidence (vaccinated Vs unvaccinated) groups

-under optimal conditions (eg RCT)

Post-licensing (phase IV)

Vaccine effectiveness:

-Protective ability of a vaccine towards the target disease/outcomes of interest in real life situations

Vaccine efficaccy = $ARU-ARV/ARU \times 100$

Vaccinated

$$ARV = 2/10 = 0.2$$

Unvaccinated

Efficacy =
$$\frac{0.9 - 0.2}{0.9}$$
 = 78%

Vaccine effectiveness

- -Many study designs can be used to calculate this measure:
 - -Case-control study
 - -Screening method
 - -Cohort study
 - -Household contact study

-If:

PCV= vaccination coverage in cases

PPV= Population vaccination coverage

Effectiveness = 1 -
$$\frac{PCV \times (1-PPV)}{(1-PCV) \times PPV}$$
 = (1-OR) x 100

Correlates of Immunity in Vaccinology

- 1) How well does a candidate vaccine prevent the targeted disease?
- 2) Is there a threshold in vaccine prevention to the target disease that constitutes a public health benefit?

Seroconversion

 Seroconversion is the development of detectable and specific antibodies to a pathogen in the blood serum

Seroconversion can result due to infection or immunization

 Serology (the testing for antibodies) is used to determine antibody positivity.

Seroconversion

 Prior to seroconversion, the blood test is seronegative for the antibodies; after seroconversion, the blood test is seropositive for the antibody

Seroconversion - you may have developed immunity to the specific infection

• Seroconversion- may indicate current infection-eg, HIV seroconversion to p24 and/or p41 antibody production or HBV-seroconversion to surface antibody-HBsAb.

Seroprotection

 The level of antibody titers equal or above which you are regarded as being protected from disease.

 Seroprotection rates refer to the % of host with antibody titers equal or above the assay cut-off were set such that subjects who had titers above the cut off could be considered protected from disease.

Factors that may influence seroprotection rates following vaccination

- Age elderly and very young / premature infants
- Immune deficiency
- Genetic factors
- Dose of vaccine
- Nutritional status malnourished / vitamin A deficient
- Route of administration id vs im

Serosurveillance

- Useful to measure immunity in a population, complements traditional disease surveillance methods
- Immunity to antigens such as: measles, mumps, rubella, varicella, hepatitis A, hepatitis B, hepatitis C, diphtheria, tetanus, polio and pertussis, rubella, etc
- Bloods from biobanks can be used for the serosurveillance

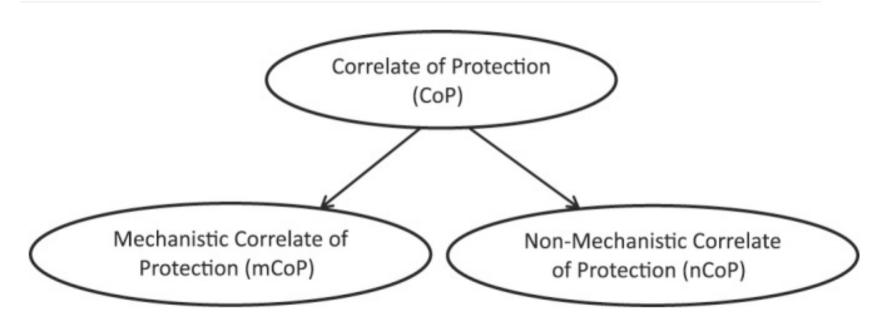
Correlate/s (Surrogate) of protection

• A measurable sign/s that a person is immune, i.e protected against becoming infected and/or developing disease.

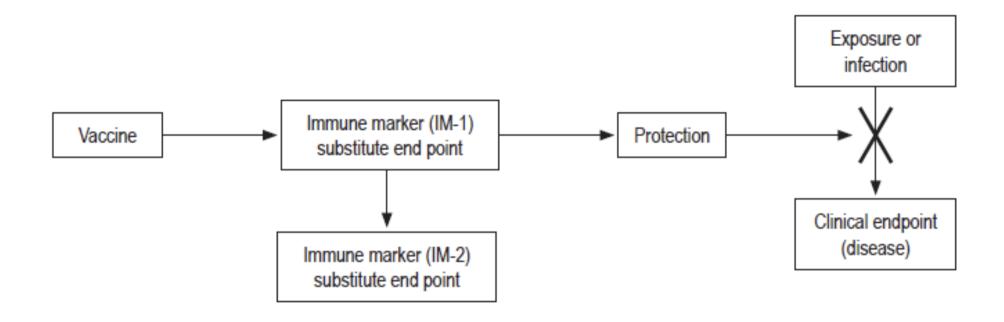
Nomenclature for Immune Correlates of Protection After Vaccination

Stanley A. Plotkin¹ and Peter B. Gilbert^{2,3}

¹University of Pennsylvania and Vaxconsult, Doylestown; ²University of Washington, and ³Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle

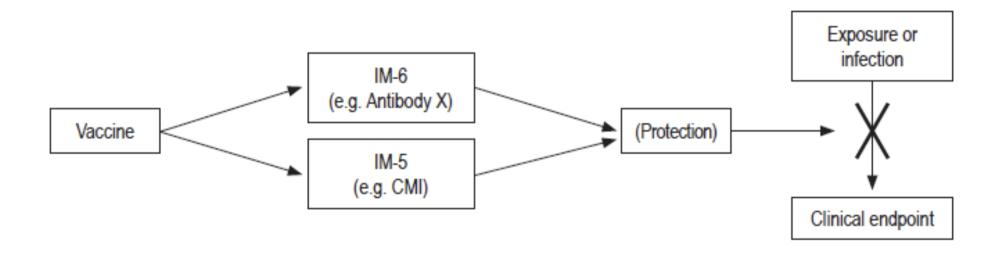

Term	Synonyms	Definition		
CoP (correlate of protection)	Predictor of protection	An immune marker statistically correlated with vaccine efficacy (equivalently predictive of vaccine efficacy) that may or may not be a mechanistic causal agent of protection ^a		
mCoP (mechanistic correlate of protection)	Causal agent of protection; protective immune function	A CoP that is mechanistically and causally responsible for protection		
nCoP (nonmechanistic correlate of protection)	Correlate of protection not causal; predictor of protection not causal	A CoP that is not a mechanistic causal agent of protection		

a A correlate of protection can be used to accurately predict the level of vaccine efficacy conferred to vaccine recipients (individuals or subgroups defined by the immune marker level).


Nomenclature for Immune Correlates of Protection After Vaccination

Stanley A. Plotkin¹ and Peter B. Gilbert^{2,3}

¹University of Pennsylvania and Vaxconsult, Doylestown; ²University of Washington, and ³Vaccine and Infectious Disease Division, Fred Hutchinson Cancer Research Center, Seattle



Correlate/s (Surrogates) of protection

Arrows imply direct causal relationships

Correlate/s of protection

Arrows imply direct causal relationships

Table 4. Some quantitative correlates of protection after vaccination.

Vaccine	Test	Correlate of protection	Reference(s)
Diphtheria	Toxin neutralization	0.01–0.1 IU/mL	[14]
Hepatitis A	ELISA	10 mlU/mL	[15]
Hepatitis B	ELISA	10 mlU/mL	[16]
Hib polysaccharides	ELISA	1 mcg/mL	[17]
Hib conjugate	ELISA	0.15 mcg/mL	[18]
Influenza	HAI	1/40 dilution	[19]
Lyme	ELISA	1100 EIA U/mL	[20]
Measles	Microneutralization	120 mIU/mL	[7]
Pneumococcus	ELISA; opsonophagocytosis	0.20-0.35 mcg/mL (for children); 1/8 dilution	[21, 22]
Polio	SN	1/4–1/8 dilution	[23]
Rabies	SN	0.5 IU/mL	[24]
Rubella	Immunoprecipitation	10–15 mIU/mL	[25, 26]
Tetanus	Toxin neutralization	0.1 IU/mL	[27]
Varicella	SN; gpELISA	≥1/64 dilution; ≥5 IU/mL	[28, 29]

NOTE. gp, glycoprotein; HAI, hemagglutination inhibition; Hib, Haemophilus influenzae type b; SN, serum neutralization.

Programmatic application of correlate of protection

2013 vaccine schedules for South Africa

Compiled by Amayeza Info Services' Vaccine Helpline: 0860 160 160

Age of child	EPI schedule	Age of child	Private practice: Option 1	Private practice: Option 2	Age of child	Private practice: Option 3
At birth	OPV (0) BCG	At birth	OPV (0) BCG	OPV (0) BCG HBV ¹	At birth	OPV (0) BCG
6 weeks	OPV (1) RV (1) DTaP-IPV//Hib (1) HBV (1) PCV (1)	6 weeks	OPV (1) RV (1) DTaP-IPV//Hib (1) HBV (1) PCV (1)	OPV (1) RV (1) DTaP-IPV//Hib/HBV (1) PCV (1)	2 months	OPV (1) RV (1) DTaP-IPV//Hib/HBV (1) PCV (1)
10 weeks	DTaP-IPV//Hib (2) HBV (2)	10 weeks	RV (2) ² DTaP-IPV//Hib (2) HBV (2) PCV (2)	RV (2) ² DTaP-IPV//Hib/HBV (2) PCV (2)	3 or 4 months	RV (2) ² DTaP-IPV//Hib/HBV (2) PCV (2)
14 weeks	RV (2) DTaP-IPV//Hib (3) HBV (3) PCV (2)	14 weeks	RV (2 or 3) ² DTaP-IPV//Hib (3) HBV (3) PCV (3)	RV (2 or 3) ² DTaP-IPV//Hib/HBV (3) PCV (3)	4 or 6 months	RV (2 or 3) ² DTaP-IPV//Hib/HBV (3) PCV (3)
9 months	Measles vaccine (1) PCV (3)	9 months	Measles vaccine	Measles vaccine	9 months	Measles vaccine

How about correlate of risk (CoR)?