Die fette Katze wird immer fetter:

New tracking and interactive tools in AFNI-FATCAT

¹MRC/UCT Medical Imaging Research Unit, UCT, South Africa ²African Institute for Mathematical Sciences, Muizenberg, South Africa ³Scientific and Statistical Computing Core, National Institutes of Health, Bethesda, MD, USA

OHBM 2014: Poster #2154. June 9, 2014: 12.45pm http://afni.nimh.nih.gov/pub/dist/HBM2014/

Functional And Tractographic Connectivity Analysis Toolbox¹

- For functional and structural connectivity
 - » Quantitative analyses
 - » Combined viewing, tracking, and InstaCorring in AFNI² and SUMA³.

Recent FATCAT additions:

- HARDI tracking
- Enhance deterministic tracking → mini-probabilistic
- (Multimodal) Interactive investigation in SUMA

1) HARDI TRACKING

The problem: Underlying WM tract structure is complicated:

- many voxels contain multiple fiber bundles and trajectories
- to a tensor model, complex structures look like low-FA gray matter.

The solution: HARDI-based multi-tracking is now available in FATCAT.

- still fast and can simultaneously analyze multiple networks.
- HARDI reconstruction via Diffusion Toolkit⁴, DSI Studio⁵, Dipy⁶, etc.
- tracking: deterministic, mini-probabilistc (below) or full probabilistic.

Examples: Human Connectome Project⁷ data.

Multiple fiber pathways through small volume (1-2 mm diameter sphere).

Complicated tract structures through given target ROIs (yellow). Tracts more easily propagate over long distances without termination in white matter that would have low-FA values in DTI modeling.

2) MINI-PROBABILISTIC TRACKING

The problem: noise gets into both DTI and HARDI fits.

- deterministic tracking ignores these uncertainties
 » susceptibility to error accumulation
- probabilistic tracking accounts for model uncertainty
 » slow
 - » generates voxel maps without linear tracts.

The solution: new 'mini-probabilistic' tracking

- includes voxelwise uncertainty
- and retains tract structure (Fig. 1)
- » more robust and fewer false negatives than deterministic
- » false positives tend to be isolated/obvious
- » fast

Figure 1: For the GM ROIs in (A), (B) shows deterministic AND-logic tracts, while the new "mini-probabilistic" option is used in (C). Note the greater extent and robustness of many bundles in (C).

3) INTERACTIVE INVESTIGATION

The problem: complicated data sets

- many networks (motor, executive control, default mode, etc.)
- many modalities (FMRI, DTI, anatomical, etc.):
- how to synthesize, view, combine, explore?

The solution: AFNI + SUMA + FATCAT

- able to generate anatomical and functional connectivity simultaneously
 - » AFNI's InstaCorr for functional correlation
 - » SUMA renders tracts, surfaces, volumes, and graphs

Examples: Human Connectome Project⁶ data.

Simultaneous viewing of tracts and target GM ROIs in SUMA and AFNI.

Simultaneous viewing of tract, target ROIs, InstaCorr-elation and structure with FATCAT, SUMA and AFNI.

CONCLUSIONS

- FATCAT is freely available as part of AFNI
 - » Includes a set of descriptive example scripts and demo data
- Mini-probabilistic tracking provides benefits over standard deterministic
 - » fast and easy to implement
- AFNI and SUMA facilitate data interaction
 - » Multimodal viewing and calculation simultaneously
 - » This is important for both research and clinical usage
- HARDI tracking now available
 - » User suggestions for more features are always welcomed.

REFERENCES: [1] Taylor PA, Saad ZS (2013). Brain Connectivity 3(5):523-535. [2] Cox RW (1996). Comput Biomed Res 29:162-173. [3] Saad ZS, Reynolds RC (2012). Neuroimage 62(2):768-73. [4] Wang R, Benner T, Sorensen AG, Wedeen VJ (2007). Proc ISMRM 15:3720. [5] Yeh FC, Wedeen VJ, Tseng WY (2010). IEEE Trans Med Imaging 29:1626-1635. [6] Garyfallidis E, Brett M, Amirbekian B, Rokem A, van der Walt S, Descoteaux M, Nimmo-Smith I, Dipy Contributors (2014). Front. Neuroinform. 8:8. [7] Van Essen DC, Smith SM, Barch DM, Behrens TEJ, Yacoub E, Ugurbil K, WU-Minn HCP Consortium. (2013).NeuroImage 80(2013):62-79.

FUNDING: This research was supported by the NIMH and NINDS Intramural Research Programs of the NIH (ZS); by the NIH grants R01 AG032088 (ZS) and NIH grant R01 HD071664 (PT); and by the South African Research Chairs Initiative (PT).